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Abstract. In this paper, the scattering/transmission inside a step-modulated subwavelength metal slit is
investigated in detail. We firstly investigate the scattering in a junction structure by two types of structural
changes. The variation of transmission and reflection coefficients depending on structural parameters are
analysed. Then a multi-mode multi-reflection model based on ray theory is proposed to illustrate the
transmission in the step-modulated slit explicitly. The key parts of this model are the multi-mode excitation
and the superposition procedure of the scatterings from all possible modes, which represent the interference
and energy transfer occurring at the interfaces. The method we use is an improved modal expansion method
(MEM), which is a more practical and efficient version compared with the previous one [C. Li, Y.S. Zhou,
H.Y. Wang, F.H. Wang, Opt. Express 19, 10073 (2011)]. In addition, some commonly used methods
including FDTD, scattering matrix method and improved characteristic impedance method are compared
with MEM to highlight the accuracy of these methods.

1 Introduction

Subwavelength metal slits, as a kind of metal/insulator/
metal waveguide, have attracted much attention in re-
cent years not only because of their ability to guide light
beyond the diffraction limit, but also because of several
remarkable advantages, such as strong field localisation,
simplicity and convenience of fabrication and integration
into optical circuits [1–14]. When light (infrared, visible
spectrum) propagates along a metal/air interface, it will
excite a collective oscillation of free electrons at the sur-
face of the metal, generating a field that decays exponen-
tially away from the interface. This mode is called a sur-
face plasmon polariton (SPP) [2–6]. In a subwavelength
metal/air/metal slit the case is somehow different, since
the SPP [5] wave decays exponentially in the metals and
is flat in the air, which is the lowest eigenmode in the slit
structure and the core part of the subwavelength metallic
optics.

Step modulation is one of the key elements in photonic
engineering that are employed in subwavelength metal
structures to design and fabricate functional plasmonic
devices, such as filters [7–10], reflectors [11] and photonic
bandgap structures [11,12]. In addition step modulation is
of important theoretical significance since it is helpful for
investigating SPP scattering. An understanding of step
modulation, combined with the staircase approximation
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and transfer matrix technique, can be used to obtain nu-
merical results describing more complicated structures.

Up until now, a number of methods have been used to
calculate the SPP scattering/transmission inside a step-
modulated slit. The finite-difference time-domain method
(FDTD) is a well-developed simulation method that pro-
vides relatively accurate results and has been considered
as a standard for testing other theoretical methods [5–14].
The effective index method, on the other hand, is a sim-
plified and direct theoretical method where only the SPP
modes are involved in the calculation, a method of one
mode approximation; however, this simplification leads to
considerable loss of the scattering information and the
numerical inaccuracy turns out to be considerable under
some conditions [6]. Matsuzaki et al. presented a trans-
mission model and gave a better description of the SPP
scattering using the characteristic impedance method [13].
Pannipitiya et al. [14] suggested an improved version of
this method, which will be called the improved char-
acteristic impedance method (ICIM) in this paper. Lin
et al. presented a similar transmission model and used the
scattering matrix method (SMM) to calculate the trans-
mission [7–9]. Although the calculated results from these
two methods fit the FDTD results, two approximations
are used in the calculation, one mode approximation and
quasi-statistic approximation. This limits their applica-
tion scope and accuracy, as will be discussed in Section 3
below. Recently, we successfully applied the modal expan-
sion method (MEM) to describe the wave behaviour inside
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Fig. 1. Sketch of a step-modulated metal slit structure con-
fined in the x direction with perfectly conducting walls at 0
and L = 2 μm. A TM wave with wavelength λ0 is normally
launched from y = Q(0). Q(1) = 0.

a symmetric step-modulated slit [6]. This method did not
involve the two aforementioned approximations and pro-
vided more accurate results.

In this paper, the MEM is further improved so as
to apply to the asymmetric modulated case in investi-
gating the scattering/transmission mechanisms inside a
step-modulated slit. A multi-mode multi-reflection model
is proposed to explain the transmission process. A remark-
able advantage of MEM is that its accuracy is control-
lable. This enables us to discuss the accuracy of FDTD
and ICIM, by comparing the results from these methods
and MEM.

The paper is arranged as follows. Section 2 sets up
our model of a step-modulated metal slit and presents
the improved MEM formulas. In Section 3, the scatter-
ing in a junction structure is studied firstly as a prereq-
uisite for later discussion, and then a multi-mode multi-
reflection model is proposed to reveal the transmission
mechanism in a step-modulated slit. Comparisons between
MEM, FDTD, SMM, and ICIM are also given in this sec-
tion to highlight the restriction of the one mode approxi-
mation and quasi-statistic approximation. Finally, conclu-
sions are presented in Section 4.

2 Model and the improved MEM

In this section, we set up the single-slit structure model
and present the formulas of the improved MEM, which
are more practical and efficient compared with those in
our previous work [6].

The model structure is shown in Figure 1. It is in-
finitely large in the yz plane but confined in the x direc-
tion by perfectly conducting walls at x = 0 and x = L.
The structure is divided into three regions along the x
direction, composed of silver/air/silver, and three layers
along the y direction. The lower boundary of the lth layer
is labeled as Q(l−1), and the interfaces between regions by

x
(l)
1 and x(l)

2 . The symbols q(l) and w(l) label layer height
and slit width, respectively. A transverse magnetic (TM)
wave, with magnetic field H being in the z direction, is
normally launched from y = Q(0) in Layer 1 and propa-
gates upward. The structural parameters are given in the
caption of Figure 1.

The dielectric constant of silver as a function of the
wavelength of the incident wave λ0 is evaluated as εAg =
(3.57−54.33λ2

0)+ i(−0.083λ0 +0.921λ3
0) by fitting the ex-

perimental data [15], which is valid for 0.6 ≤ λ0 ≤ 1.6 μm.
In this paper, the wavelength is mainly set as λ0 = 1 μm;
thus, εAg = −50.76 + 0.083i.

In the remaining part of this section, we suggest an
improved version of the MEM, which has the same output
as the previous one [6] but is easier and faster.

The approach of the MEM is to expand the unknown
functions (electromagnetic field distribution in the present
case) by a complete set of orthogonal functions. This
means that the MEM has two steps: one being the eigen-
value problem of the system; and the other to establish
and solve the coupled equations subject to boundary con-
ditions. However, the choice of the complete set in the
modal expansion is not unique, but depends on the con-
figuration of the system. It can be the eigenfunctions of a
specific structure, or other functions such as sine or expo-
nential functions.

In reference [6], the fields in the given structure were
handled by separation of variables. The factors containing
the x variable were expanded by the eigenmodes {ψ(l)

n (x)}
between two perfectly conducting walls. The magnetic
fields were expressed as

Hz(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
n ψ

(1)
n (x)[Ineik(1)

yn (y−Q(0))

+Rne
−ik(1)

yn (y−Q(1))], Q(0) ≤ y < Q(1),
∑

n ψ
(2)
n (x)[Ene

ik(2)
yn (y−Q(1))

+Fne
−ik(2)

yn (y−Q(2))], Q(1) ≤ y < Q(2),
∑

n ψ
(3)
n (x)Tne

ik(3)
yn (y−Q(2)),

Q(2) ≤ y <∞,
(1)

where In, Rn, En, Fn, and Tn were expansion coefficients
which involved the scattering/transmission information of
every eigenmode. It was necessary to solve a transcenden-
tal equation in order to determine the eigenvalues and
eigenfunctions. Even with the assistance of a powerful
root-seeking method [16], this procedure was still time-
consuming. Moreover, each layer had its own eigenfunc-
tions. At an interface, it was required by the boundary
conditions to calculate the overlap between the eigenfunc-
tions at the two sides of the interface, known as coupling
integrals. Such integrals brought complexity to the pro-
gram.

To avoid these difficulties, in this paper the factors
containing the x variable were expanded by a sine basis,
subject to the perfectly conducting boundary condition.
That is to say, the complete set {ϕn(x)} is chosen as

ϕn(x) =
√

2/L sin(kxnx), kxn = nπ/L, n = 1, 2, 3 . . .
(2)
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The eigenvalues kxn are solely determined by the distance
between the two perfectly conducting walls, independent
of the positions x(l)

1 and x
(l)
2 , so this basis set is valid for

all three layers.
Correspondingly, the magnetic fields and their deriva-

tives in the three layers can be expressed as [17]

Hz(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
n ϕn(x)

∑
mW

(1)
n,m[imeik(1)

ym(y−Q(0))

+rme−ik(1)
ym(y−Q(1))], Q(0) ≤ y < Q(1),

∑
n ϕn(x)

∑
mW

(2)
n,m[eme

ik(2)
ym(y−Q(1))

+fme
−ik(2)

ym(y−Q(2))], Q(1) ≤ y < Q(2),

∑
n ϕn(x)

∑
mW

(3)
n,mtme

ik(3)
ym(y−Q(2)),
Q(2) ≤ y <∞,

(3)
where im, rm, em, fm, and tm are the expansion coeffi-
cients. The insertion of equation (3) into the Helmholtz
equation yields an eigenvalue problem in each layer ex-
pressed by A(l)W (l) = (ik(l)

y )2W (l) with ik
(l)
y and W (l)

being the eigenvalues and eigenfunctions, and the opera-
tor A(l) being [18]

A(l) = −
[
Ẽ(l)

]−1
{

k2
0 [I] + [K]

[
E(l)

]−1

[K]
}

, (4)

where
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
Ẽ(l)

]

mn
=

∫ L

0
ϕm(x)ϕn(x)/ε(l)(x)dx

[
E(l)

]

mn
=

∫ L

0
ϕm(x)ϕn(x)ε(l)(x)dx

[K]mn =
∫ L

0
ϕm(x) ∂

∂xϕn(x)dx
[I]mn = δmn.

(5)

In these equations , [·] denotes a N×N matrix where N is
the truncation number, and k0 = 2π/λ0 is the wave vector
in vacuum.

Here we mention the two advantages of the sine expan-
sion in the x direction. One is that the eigenvalue problem,
equation (4), is very easy for computer implementation,
which avoids the cumbersome solution-seeking procedure
necessary in the eigenmode expansion [6]. The other is
that the complete set of sine functions are the same for all
layers, so that the coupling integrals at the interfaces be-
come quite simple. These two advantages greatly simplify
the calculation program.

Corresponding to equation (3), the derivative of the
magnetic field is expressed as

1
ε

∂

∂y
Hz =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
n

ϕn(x)
ε(1)

∑
mW

(1)
n,mik

(1)
ym[imeik(1)

ym(y−Q(0))

−rme−ik(1)
ym(y−Q(1))], Q(0) ≤ y < Q(1),

∑
n

ϕn(x)

ε(2)

∑
mW

(2)
n,mik

(2)
ym[eme

ik(2)
ym(y−Q(1))

−fme
−ik(2)

ym(y−Q(2))], Q(1) ≤ y < Q(2),

∑
n

ϕn(x)
ε(3)

∑
mW

(3)
n,mik

(3)
ymtme

ik(3)
ym(y−Q(2)),

Q(2) ≤ y <∞.
(6)

Applying the layer boundary conditions, we obtain the
coupled equations as follows
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
mW

(1)
pm

[
ime

ik(1)
ymq(1)

+ rm

]
=

∑
mW

(2)
pm

[
em + fme

ik(2)
ymq(2)

]

∑
n Ẽ

(1)
pn

∑
mW

(1)
nmk

(1)
ym

[
ime

ik(1)
ymq(1) − rm

]
=

∑
n Ẽ

(2)
pn

∑
mW

(2)
nmk

(2)
ym

[
em − fme

ik(2)
ymq(2)

]

∑
mW

(2)
pm

[
eme

ik(2)
ymq(2)

+ fm

]
=

∑
mW

(3)
pmtm

∑
n Ẽ

(2)
pn

∑
mW

(2)
nmk

(2)
ym

[
eme

ik(2)
ymq(2) − fm

]
=

∑
n Ẽ

(3)
pn

∑
mW

(3)
nmk

(3)
ymtm.

(7)

The incident coefficients im are determined by the incident
wave. In this paper, the incident wave is always a SPP
wave launched in Layer 1, namely, ψ(1)

1 (x). Therefore, one
naturally has

∫ L

0

ϕp(x)ψ
(1)
1 (x)dx =

∑

m

W (1)
pmim, (8)

which determines the coefficients im. After setting the in-
cident coefficients im, the four groups of coefficients, rm,
em, fm, and tm can be obtained from equation (7). Thus
all the field quantities are obtained.

In this paper, we will focus on discussing the re-
flection/transmission mechanisms, which are mainly de-
scribed by the reflection coefficients Rn and transmission
coefficients Tn in equation (1). For example, the ampli-
tudes of the SPP modes in Layer 1 and 3, |Rn| and |Tn|, are
the reflection and transmission efficiencies of the system,
and their arguments, arg(Rn) and arg(Tn), are the cor-
responding phase shifts. Therefore, a projection between
the fields calculated by equation (3) and the eigenmodes
{ψ(l)

n (x)} is implemented for obtaining Rn and Tn. In the
following, the absolute values of these coefficients gener-
ally corresponds to the excitation efficiency.

To summarise our proposed approach: the field is ex-
panded using sine functions which are complete and uni-
form in all layers. The corresponding eigenvalue problem
reduces to a matrix equation as shown in equation (4),
which makes the calculation quite easy. Accordingly, the
procedure here is much more practical and efficient com-
pared to the previous one [6]. Finally, the overlaps between
the calculated field and the eigenmodes in equation (1)
give the reflection and transmission coefficients necessary
for physical analysis.

Although we merely study the three-layer structure,
the procedure we have developed here is easily applied to
more complicated structures by implementing the S ma-
trix algorithm [19] or the enhanced transmittance matrix
approach [20].

3 Numerical results and analysis

In this section, we investigate the scattering/transmission
mechanisms inside a step-modulated subwavelength metal
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slit. To do so, the scattering in a junction structure is
first discussed in detail, since the slit comprises more than
one junction structure. Then we disclose the multi-mode
multi-reflection model in the transmission process in the
slit. In the course of this discussion, the accuracy of FDTD
and ICIM is considered by comparing the results of these
two methods with those obtained using the MEM.

In our calculation, the confinement is set as L = 2 μm.
We have tested that 800 modes, N = 800 in equation (4),
are enough to give results with precision up to four signifi-
cant digits. The convergence test for truncation number N
and the accuracy test for confined width L will be carried
out later in Figure 7.

3.1 Junction structures

A junction structure is the connection of two half-infinitely
long slits with widths being denoted by w(1) and w(3),
respectively, which can be easily realised in Figure 1 by
setting the height of Layer 2 to 0. In reference [6], some
scattering properties of symmetric structures have been
revealed. For example, the main component of the fields
inside the slits were guided modes which played a very
important role in scattering/transmission, and the unim-
portant components were the radiation modes excited
which were necessary to fulfill the boundary conditions,
but made little contribution to the transmission. The fol-
lowing discussion will therefore focus on the guided modes.
However, the discussion in reference [6] was limited to the
symmetric case. Here we present a detailed investigation
on how the scattering is affected by asymmetry.

Two types of structural changes are considered. In
Type I, the widths of the two slits are fixed and the po-
sition of the narrower one can be anywhere between the
left and right extremities, as shown in the inner panel of
Figures 2a and 2c. In Type II, the left walls of the slits
are aligned and the width of the narrower one is fixed, but
that of the wider one can vary, as schematically shown in
the inner panel of Figures 3a and 3c.

The results of the Type I structure are plotted in Fig-
ure 2. The left wall of the wider slit is at x1 = 0.6 μm. For
w(1) = 0.1 and w(3) = 0.8 μm, when the position of the
narrower slit is moved from left to right, the excitation
efficiencies and their phase shifts are plotted in Figures 2a
and 2b, respectively. In Figures 2c and 2d are the ex-
citation efficiencies and their corresponding phase shifts
for the structure with w(1) = 0.8 and w(3) = 0.1 μm.
In Figures 2e and 2f are the absolute values of the first
three eigenfunctions of the narrower and wider slits, re-
spectively. In Figures 2a, 2c, 2e and 2f the absolute val-
ues are plotted because these quantities are complex. The
eigenmodes in the narrower and wider slits are denoted
by ψ(na)

n and ψ(wi)
n , respectively. In Figures 2e and 2f, the

lowest modes ψ(na)
1 and ψ(wi)

1 , plotted as black curves, are
just SPP modes, and the second modes ψ(na)

2 and ψ
(wi)
2 ,

plotted as red curves, are actually antisymmetric wave
functions within the slits. Note that the curve of |ψ(wi)

3 |

is divided into three parts by two zeros. The sign of the
central part of ψ(wi)

3 is reversed relative to the other parts.
We note that under our present parameters, only the

first two eigenmodes of the narrower slit, ψ(na)
1 and ψ(na)

2 ,
are within the slit (guided modes), see the black and red
lines in Figure 2e. The wave functions of the higher modes
are mainly distributed within the metal (radiation modes),
see, as an example, the third mode ψ(na)

3 in Figure 2e. The
behaviour of |ψ(na)

3 | with the position of the narrower slit
has to be explicitly described as follows. When the slit
moves to the right, the width of metal at the right side of
the slit becomes thinner, so that the hill is compressed. If
the narrower slit is on the right side of the centre position
x = 1 μm, the hill will appear at the left side of the slit. If
the slit is just at, or very near, the centre x = 1 μm, there
will be two hills at the two sides of the slit, respectively,
since the structure in this case is symmetric [6].

Three obvious features of the excitation efficiencies can
be seen in Figures 2a and 2c. The first is that all the curves
there exhibit a central symmetry, because all the configu-
rations are symmetric with respect to the central line at
x = 1 μm. The second is, from comparison of the black and
red solid lines in Figures 2a and 2c, that the excitation ef-
ficiencies of the SPP modes in narrow slits are much larger
than those of the second modes. The third is, by inspection
of dash-dotted lines in Figures 2a and 2c, that the shapes
of the efficiency curves of the modes in wider slits resem-
ble their eigenfunctions |ψ(wi)

n | in Figure 2f. The latter
two features can be attributed to the treatment of MEM
which involves a mutual expansion between the modes in
different layers.

We should keep in mind that the total field at the
layer boundary, Hz(x), can be respectively achieved by
the linear combination of eigenfunctions in the narrower
and wider slit, and the expansion coefficients depend on
the position of the narrower slit, subject to boundary con-
ditions. Then, the curves in Figures 2a and 2c can be ex-
plained qualitatively.

We first consider the case where the wave is incident
from the narrower slit to the wider one, as shown by
the inset in Figure 2a. The reflection efficiencies |Rn| are
proportional to the projection

∫ L

0
ψ

(na)
n Hz(x)dx, where

the integration is along the interface between the nar-
rower and wider slits. Since the eigenfunctions in the
wider slit or their combination, Hz(x), can be seen as
a smooth variation within the narrower slit, the reflec-
tion efficiency of the SPP mode in the narrower slit,
|R1| ∝

∫ L

0
ψ

(na)
1 Hz(x)dx ≈ ∫

w(na) ψ
(na)
1 Hz(x)dx, is dom-

inant because ψ
(na)
1 is also smooth within the slit, and

|R2| ∝ ∫ L

0 ψ
(na)
2 Hz(x)dx ≈ ∫

w(na) ψ
(na)
2 Hz(x)dx is very

small because the second mode is an antisymmetric func-
tion within the slit. For the transmitted waves, the
transmission efficiencies |Tn| are qualitatively determined
by

∫ L

0
ψ

(wi)
n Hz(x)dx, which includes

∫ L

0
ψ

(wi)
n ψ

(na)
1 dx,

∫ L

0 ψ
(wi)
n ψ

(na)
2 dx,

∫ L

0 ψ
(wi)
n ψ

(na)
3 dx and so on. We have al-

ready shown that the excitation of the second mode in
the narrow slit is very small, so that the contribution
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Fig. 2. (Color online) Scattering in Type I junction structures. The left wall of the wider slit is fixed at x1 = 0.6 μm.
Q(0) = Q(1) = Q(2) = 0. In all the figures, the results of the narrower slit are plotted by solid lines and those of the wider
slit by dash-dotted lines. The narrower slit moves from the left to right. In (a) to (d), the x-axes are its central position. For
the structure with w(1) = 0.1 and w(3) = 0.8 μm, (a) excitation efficiency; (b) phase shift. For the structure with w(1) = 0.8
and w(3) = 0.1 μm, (c) excitation efficiency; (d) phase shift. (e) and (f) depict the absolute value of the eigenfunctions in the
narrower and wider slits, respectively, when their left walls are aligned.

of the factor
∫ L

0 ψ
(wi)
n ψ

(na)
2 dx is negligible. The contri-

bution of the radiation modes is relatively complicated,
but unimportant because what happened inside the slit is
the key part of the scattering procedure, while the radia-
tion modes localised in the metal are excited to fulfil the
boundary condition outside the slit. That is why we try to
avoid these modes in the discussion. By employing several
numerical tests, it can be shown that the radiation modes
do make a contribution to the transmitted waves, but that
this contribution is comparatively small. Therefore, the

factor
∫ L

0 ψ
(wi)
n ψ

(na)
1 dx ≈ ∫

w(na) ψ
(wi)
n ψ

(na)
1 dx mainly de-

termines the transmission efficiencies |Tn|. As an example,
let us consider the |T3| curve. |T3| ∝

∫

w(na) ψ
(wi)
3 ψ

(na)
1 dx,

where ψ(na)
1 is smooth within a narrow region, see, the

black line in Figure 2e. When the narrower slit is posi-
tioned at the left side with its centre being at x = 0.65 μm,
|ψ(wi)

3 | has a maximum at this position. Therefore the
projection of ψ(na)

1 onto ψ
(wi)
3 is at a maximum. As the

narrower slit moves to the right, we image that the black

http://www.epj.org
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Fig. 3. (Color online) Scattering in Type II junction structures. The left walls of the slits are aligned at x1 = 0.6 μm.
Q(0) = Q(1) = Q(2) = 0. In all the figures, the results of the narrower slit are plotted by solid lines and those of the wider slit
by dash-dotted lines. The width of the narrower slit is 0.1 μm. The x-axes are the width of the wider slit, denoted as w. For
a wave incident from the narrower slit to the wider one, (a) excitation efficiency; (b) phase shift. For a wave incident from the
wider slit to the narrower one, (c) excitation efficiency; (d) phase shift. (e) and (f) show the real and imaginary parts of the

propagation constant ky , appearing in equation (1) with the notation k
(l)
y , of the wider slit.

curve in Figure 2e also shifts to the right. At x = 0.794 μm,
|ψ(wi)

3 | is zero. Accordingly, the projection of ψ(na)
1 at this

position onto ψ(wi)
3 , as well as |T3|, becomes zero. Between

x = 0.65 and x = 0.794 μm, |T3| should drop from the
maximum to zero. We notice that around the zero, the
phase of T3 changes by nearly π. At the other zero of
|ψ(wi)

3 | at x = 1.206 μm, |T3| again reaches zero and its
phase changes by nearly π once more. This analysis ex-
plains why the shape of |T3| is similar to |ψ(wi)

3 |. It is the

narrow and smooth profile of |ψ(na)
1 | that results in the

similarity between the |T3| and |ψ(wi)
3 | curves. The |T2|

curve in Figure 2a is understood in the same way. |T1|
is mainly determined by

∫

w(na) ψ
(wi)
1 ψ

(na)
1 dx, which is a

smooth and relatively flat curve due to the smooth varia-
tions of both SPP waves.

We next look to the case where a SPP wave is inci-
dent from the wider slit to the narrower one, as shown
in the inset of Figure 2c, where the incident wave is a
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smooth curve within the range of the wider slit width,
see the black curve in Figure 2f. We again begin with the
waves in the narrower slit. |Tn| is proportional to the inte-
gral

∫ L

0 ψ
(na)
n Hz(x)dx, where Hz(x) is the combination of

eigenfunctions in the wider slit and considered as a smooth
varying curve within the range of the narrower slit, so that
the transmission efficiency of the SPP mode is dominant
and much larger than that of the second mode. For the
waves in the wider slit, ignoring the contribution of the
second mode and radiation modes, the reflection efficien-
cies |Rn| are mainly determined by

∫

w(na) ψ
(wi)
n ψ

(na)
1 dx,

leading to the fact that the |Rn| curves in Figure 2c have
similar shapes to the |Tn| curves in Figure 2a.

The transmission efficiency |T1| in Figure 2a is exactly
the same as that in Figure 2c, and the efficiencies |R1|,
|T2| and |T3| in Figure 2a have the same behaviour as
|R1|, |R2| and |R3| in Figure 2c, respectively, although
with different values. The reflection efficiencies |R1| and
|R2| in Figure 2c are higher than those in Figure 2a. This
is because Figure 2c represents the case of a wave inci-
dent from a wider slit to a narrower one, which needs to
squeeze light into a narrower space, so the higher reflection
is understandable.

The variations of the scattering phase shifts for the
two different incident cases discussed above are plotted
in Figures 2b and 2d. It is seen that the phases of T1

in both these figures are also the same. We note that
at the positions where ψ

(wi)
n is zero, the corresponding

coefficients Rn and Tn have an associated phase change
of π.

The results of the Type II structure are plotted in Fig-
ure 3. The left walls of the slits are aligned at x1 = 0.6 μm.
The width of the narrower slit is 0.1 μm, but that of the
wider one, denoted by w, varies from 0.1 to 0.8 μm, as
shown in the insets in Figures 3a and 3c. The most distinct
feature is the drastic changes of the excitation efficiencies
over a narrow range of slit width, as shown in Figures 3a
and 3c near w = 0.46 μm.

When the width of a slit is 0.1 and 0.8 μm, the first
three eigenmodes have been plotted in Figures 2e and 2f,
respectively. Now the width w varies. Our calculation
shows that the modes resemble those in Figure 2e when
w < 0.15 μm and those in Figure 2f otherwise. The first
three eigenmodes are denoted ψ1, ψ2 and ψ3, and their
ky’s are by ky1, ky2 and ky3, respectively.

The SPP mode ψ1 is obviously a propagation mode
since ky1 has a negligible imaginary part, and ψ3 is a de-
caying mode as demonstrated by the large imaginary com-
ponent of ky3. When w < 0.46 μm, ky2 is nearly purely
imaginary so that ψ2 is an evanescent mode, while when
w > 0.46 μm, ky2 becomes nearly purely real so that ψ2

becomes a propagation mode. A turning point appears
at w = 0.46 μm at which ψ2 transforms its propagation
property. This transformation leads to the drastic changes
of the excitation efficiencies, similar to the cause of the
well-known Wood’s anomaly in the grating theory [21].

The analyses of the excitation efficiencies in Figures 3a
and 3c are performed in the same way as those in the
Type I structure. Therefore, some similar conclusions are

Fig. 4. (Color online) Sketch of the multi-mode multi-
reflection model: (a) multi-reflection between interfaces and
(b) multi-mode excitations at each point.

obtained, such as the identity of |T1| curves in Figures 3a
and 3c and the similarity between the efficiencies |R1|, |T2|
and |T3| in Figure 3a and |R1|, |R2| and |R3| in Figure 3c,
respectively, although with different values.

The drastic changes of excitation efficiencies at the
turning point have to be explained from an energy per-
spective. As an example, let us consider the case where
the wave is incident from the narrower slit to wider one,
as shown by the inset in Figure 3a. At the start point
w = 0.1 μm, the two slits are the same, so that |T1| = 1
and all other excitation efficiencies are zero. Close to the
turning point, |T1| reaches a minimum, and |R1| and |T2|
reach a maximum. Since the second mode in the wider slit
ψ2 now is an evanescent mode, the energy is mainly stored
in the reflected SPP wave. Once ψ2 becomes a propaga-
tion mode, it must gain a large portion of energy from the
reflection due to its large excitation efficiency, and leads
to the rapid drop of |R1| as shown in Figure 3a. At the
same time, the decreasing |R1| causes a further redistribu-
tion of excitation efficiencies by the boundary continuum
condition. Therefore, what lies behind the drastic changes
of excitation efficiencies is a redistribution of energy be-
tween evanescent modes and propagation modes. The ex-
planation of the energy redistribution is also suitable for
the case where the wave is incident from the wider slit to
the narrower one.

It is seen from Figures 3b and 3d that the phases of
both T1 in these two figures are also the same. At the
turning point, T1 changes its phase by π. The change of
π in phase at the turning point also occurs for T3 in Fig-
ure 3b and R3 in Figure 3d.

So far, the scattering mechanisms of the two types of
structures have been investigated. Although the investiga-
tion here is restricted to the incident wave with wavelength
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λ0 = 1 μm, the analysis above is also applicable to the in-
frared and visible spectrum. Furthermore, the analysis has
important practical applications. For example, one can ex-
cite/suppress specific modes to control the field distribu-
tion inside a slit, or design a high-efficiency reflector, by
changing the position or width of the slit.

3.2 The multi-mode multi-reflection model

Having understood the scattering at the interface in a
single junction structure, we are ready in this subsec-
tion to discuss the transmission in a step-modulated slit,
which can be regarded as the combination of two junction
structures. In order to reveal the transmission clearly, we
present here an analysis of the multi-mode multi-reflection
model that combines wave and ray optics.

Figure 4 presents a sketch of the multi-mode multi-
reflection model. In a step-modulated subwavelength
metal slit, there are two interfaces at Q(1) and Q(2). Let
us discuss the wave reflection and transmission in the slit.
When the incident SPP launched from Q(0) in Layer 1
impinges on the interface between Layers 1 and 2, Q(1),
it generates a reflection wave in Layer 1 and transmis-
sion wave in Layer 2. The latter continues going upwards,
and when it reaches the other interface, Q(2), yields re-
flection and transmission waves again. Obviously, there
occurs multi-reflection in Layer 2, shown by Figure 4a.

Because the wave in each layer is some linear combi-
nation of the eigenmodes of the layer, each ray in Fig-
ure 4a can in fact be expanded by eigenmodes, except the
primary incident light. For example, at the point A, the
reflected wave contains all possible modes in Layer 1 and
the transmitted wave contains the modes in Layer 2. That
is to say, the scattering excites all the modes in both lay-
ers. When all the possible modes in Layer 2 reach point
B, each mode again excites all possible eigenmodes in a
reflected wave in Layer 2 and in a transmitted wave in
Layer 3. This phenomenon is termed multi-mode exci-
tation. To show the phenomenon explicitly, we draw in
Figure 4b the multi-mode excitation at point C. Suppose
that the waves in Layers 1 and 2 are expanded by three
eigenmodes, respectively. Then when the three modes in
Layer 2 are incident at point C, as shown in Figure 4b,
the first mode yields the reflected and transmitted waves,
both containing three eigenmodes in the respective layer,
i.e. the incident black line excites the black, red and blue
lines in the transmitted waves in Layer 1 and reflected
waves in Layer 2, respectively. In the same way, the in-
cident red line also excites the black, red and blue lines
in the transmitted waves in Layers 1 and reflected waves
in Layer 2, respectively, and so does the incident blue
line. Therefore, the total reflected wave at point C in-
cludes three eigenmodes in Layer 2, each being in turn
the superposition of the reflections from the three inci-
dent eigenmodes. Similarly, the total transmitted wave at
point C includes three eigenmodes in Layer 1, each being
in turn the superposition of the transmissions from the
three incident eigenmodes.

In summary, the total transmission and reflection co-
efficients in Layer 3 and Layer 1 in Figure 4a are obtained
by summing up all the single-scattered coefficients, respec-
tively. In addition, it is worth mentioning that the multi-
mode multi-reflection model is a generalised form of the
single-mode multi-reflection model which occurs in a F-P
cavity. The former will be simplified to be the latter if only
one mode can be excited.

In this paper, when we say model analysis, we mean the
physical explanation of the multi-mode multi-reflection. In
order to test this analysis, numerical calculations based
on this physical picture were carried out and the results
compared with MEM. In Figure 5 we have plotted are
the transmission efficiencies as a function of the length
of Layer 2, q(2), when the incident wave is SPP mode.
The solid lines in Figures 5a and 5b are the results of
MEM, which necessarily comprise the contributions from
all possible eigenmodes. The symbols represent the results
of the model analysis. In a slit with width w(2) = 0.3 μm,
only the first mode, i.e. the SPP mode, can propagate and
all other modes are evanescent. Thus, when q(2) is suffi-
ciently long, the higher modes attenuate to a negligible
value, and the transmission can be well described by a
multi-reflection of only the SPP mode.

In Figure 5a it is seen that the results of the model
analysis including the first two modes are the same as
the line obtained from MEM. When q(2) > 0.8 μm, the
circles and crosses are identical, indicating that the con-
tribution from the second mode is negligible. While for
q(2) < 0.8 μm, crosses deviate from circles, indicating
that the second mode should not be omitted since it does
not fade out within this distance range. In Figure 5a, the
crosses end at q(2) = 0.09 μm, because below this distance
the multi-reflection of the first two modes diverges. What
is the reason for this divergence? Firstly, the divergence
is not caused by the propagation mode since the multi-
reflection of the SPP mode always converges, as shown by
the circles in Figure 5a. Neither is it caused by the expo-
nentially increasing term which originates from improp-
erly handling of the evanescent waves [20], for it occurs
only at short distances. Actually, the divergence arises
from the coupling between the eigenmodes containing the
evanescent modes. With the contribution of the evanescent
wave, as shown in Figure 4b, the superposition will result
in larger transmission and reflection coefficients after each
scattering if the second mode does not decay to a certain
value. Thus, there exists a critical distance above which
the multi-mode multi-reflection analysis is applicable. For
the structure given in Figure 5a, it is q(2) = 0.09 μm.

To verify the above conclusion concerning the diver-
gence of the evanescent mode, we suppress the antisym-
metric second mode by reforming the slit structure to a
symmetric one, as shown in Figure 5b. Then the circles
and crosses are identical at any distance. Let us see the
contribution from the third mode. The plus signs includ-
ing contributions from the first three modes are in good
agreement with the results of MEM as q(2) > 0.012 μm.
The crosses and circles are identical when q(2) is above
0.3 μm, but it is not so when q(2) is below 0.3 μm.
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Fig. 5. The SPP transmission vs. q(2) calculated by MEM and model analysis for slit structure with
[
Q(0), Q(1), Q(2)

]
=

[
−1, 0, q(2)

]
μm. The solid lines are the results of MEM. The circles, crosses and plus signs are the results including contributions

from the first one, two and three modes, respectively, from the model analysis. (a) Slits align to left at x
(l)
1 = 0.85 μm,[

w(1), w(2), w(3)
]

= [0.1, 0.3, 0.1] μm; (b) the symmetric case of the slit structure in (a).

That is to say, if the distance is less than 0.3 μm, the
evanescent third mode is not negligible. This time the crit-
ical height for the third mode is q(2) = 0.012 μm, which is
much smaller than that of the second mode in the struc-
ture shown in Figure 5a. The reason is that the decay of
the third mode is faster than that of the second mode,
for the propagation constant ky of the former has a larger
imaginary part than the latter, as shown in Figure 3f.

Next, we investigate the coupling between propagation
modes. In Figure 5a, only the first mode, the SPP mode, is
a propagation mode in Layer 2 with width w(2) = 0.3 μm.
When the width is enlarged, the second mode can also
become propagating. In Figure 6a the transmission effi-
ciencies are plotted in the same structures as in Figure 5a
except that the width of Layer 2 is extended to be 0.8 μm.
For this width, the second mode is indeed propagating. It
can be seen that even when q(2) goes to zero, the result
containing the contributions from the first two modes is
not divergent, and agrees with the MEM curve very well
when q(2) > 1.2 μm, which confirms the statement that
the propagation modes do not cause the divergence. When
q(2) is below 1.2 μm, the contribution from the third mode
has to be added in order to achieve accurate results. How-
ever the cost of this accuracy is the introduction of diver-
gence below q(2) = 0.181 μm.

Similar to the treatment in Figure 5b where the sec-
ond mode in Layer 2 is removed by a structural change,
it is also possible to suppress the third mode excited in
Layer 2. The way to implement the suppression is to shift
the center of the narrower slits to x = 0.794 μm, as shown
in the inset of Figure 6b. At this position, the excitation
efficiency of the third mode is nearly zero, see Figure 2a.
The transmission results are plotted in Figure 6b. It is
seen from the figure that up to the first five eigenmodes
have to be included in the model analysis in order to meet
the MEM curve. The divergence in this case is caused by

the fourth mode, and the corresponding critical width is
q(2) = 0.084 μm.

In summary, the multi-mode multi-reflection model
provides a correct description of the transmission inside a
step-modulated subwavelength metal slit when the height
of modulated layer (Layer 2) is above a critical height. It
fails otherwise due to the coupling between propagation
modes and evanescent modes.

3.3 Comparison of different methods

In this subsection, the MEM and the other three methods,
FDTD, SMM and ICIM, are discussed, and the calculated
results of FDTD and ICIM are compared to the MEM
results. The accuracy of these methods is investigated and
some useful conclusions are obtained. Before presenting
the numerical results, we would like to briefly compare
these four methods.

FDTD, a commonly used simulation method in optics,
is used to calculate field quantities directly from Maxwell’s
equations. In principle, this method and MEM can both
provide accurate and reliable results. Here we would like to
point out the three key differences between them. Firstly,
the way that they solve Maxwell’s equations is different:
FDTD uses the finite difference method to evolve fields in
space and time domains, while the MEM establishes and
solves the coupled equations in the frequency domain by
the method of moments. Secondly, the way that they han-
dle outermost boundaries is different: FDTD makes use
of, for the outermost boundaries of a system, perfectly
matched layers which can totally absorb waves without
reflecting them back, while MEM confines the structure
with two perfectly conducting walls such as in this paper.
The feasibility of the latter is due to the fast attenuation
of light (infrared, visible spectrum) in a metal. If the con-
fined width is large enough, the effects introduced by the
two perfectly conducting walls are negligible, as shown in
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Fig. 6. The SPP transmission vs. q(2) calculated by MEM and model analysis for slit structure with
[
Q(0), Q(1), Q(2)

]
=

[
−1, 0, q(2)

]
μm. The solid lines are the results of MEM. The circles, crosses, plus signs, up-triangles and down-triangles are

the results including contributions from the first one to five modes, respectively, from the model analysis. (a) Slits align to

left at x
(l)
1 = 0.6 μm,

[
w(1), w(2), w(3)

]
= [0.1, 0.8, 0.1] μm; (b) the same structure but the narrower slits are shifted to be

x
(1)
1 = x

(3)
1 = 0.744 μm, a position that totally suppresses the excitation of the 3rd mode, see Figure 2a.

Figure 7a below. Although the perfectly matched layer
technique can be introduced to MEM [22], it dramatically
complicates the MEM calculation. Thirdly, the way that
they converge is different: the convergence of FDTD de-
pends on the size of the Yee cell used in the simulation,
while that of MEM on the confined width L and the trun-
cation number N .

SMM [7–9] and ICIM [13,14] are two other frequently
used methods which show the following three features.
Firstly, according to the two methods, the modulated re-
gion, Layer 2, would be divided into a central scatter-
ing region and a stub (as shown in Fig. 2 of Ref. [7] and
Fig. 4 of Ref. [13]), and it would be assumed that the
SPP mode multi-reflection occurred in the stub (although
Refs. [13,14] did not mention this point, it could be recog-
nised from the transmission equations, Eq. (4) in Ref. [13]
and Eqs. (8) in Ref. [14]). Secondly, both of them use the
one mode approximation, which means that only the SPP
modes exist in the stub and slits. Thirdly, the phase shifts
caused by scattering in the central scattering region could
not be calculated properly, so they were ignored by means
of the quasi-statistic approximation [13,14,23] (although
Refs. [7–9] did not mention the quasi-statistic approxima-
tion, it was easily seen by the procedure used to obtain
the scattering matrix given in Ref. [8]).

In the following, a numerical comparison between these
methods is performed. The convergence comparison of
MEM and FDTD in a Type I structure is presented in
Figure 7.

Figure 7a shows the calculated results of MEM where
the confined width L = 2, 4 μm and the truncation num-
ber N = 400, 800, respectively. The results plotted as
squares, crosses and plus signs in Figure 7a are identical,
showing that the boundary effect imposed by the perfectly
conducting walls can be completely ignored in such con-
fined widths. As already mentioned at the beginning of
Section 3, the parameters L = 2 μm and N = 800 ensure
that all the calculated results have at least four signifi-

cant digits. A FDTD simulated transmission curve with
cell size 2.5×2.5 nm2 is also plotted in Figure 7a for com-
parison. Obviously, the FDTD curve is close to the MEM
ones, but they do not coincide. In order to investigate
the convergence of FDTD, three simulated transmission
curves with different cell sizes are plotted in Figure 7b
for the same structure as in Figure 7a but with horizontal
abscissa being x(1)

1 ∈ [0.7, 0.8] μm to highlight two absorp-
tion peaks. A MEM curve is also plotted in the figure for
comparison. For a large cell size such as 5×5 nm2, only one
vague dip, instead of two, is observed. The dip will grad-
ually separate into two and approach the MEM curve as
the cell size decreases. However, even for 1.25× 1.25 nm2,
namely 1/800 of the incident wavelength or 1/80 of the
stub width (height of Layer 2), the deviation of the re-
sults between FDTD and MEM is still observable, which
means that FDTD has a relatively slow convergence. For
this reason we do not use FDTD to verify the calculated
results of MEM in this paper.

The transmission behaviour of the structure consid-
ered in Figure 7 was also investigated by SMM [9]. This
method actually utilises some of the results of FDTD to
obtain the scatting matrix elements and loses some phase
information due to the quasi-statistic approximation, so
that its final results could not be better than those of
FDTD. This is demonstrated explicitly by the compari-
son between the results of FDTD and SMM given in refer-
ences [8,9]. Therefore, it is not necessary to discuss the ac-
curacy of SMM here, because it depends on the simulation
results of FDTD which have already been shown in Fig-
ure 7b. Besides, since the SMM and ICIM utilise a similar
transmission model, their calculation errors ought to have
the same order of magnitude. We now investigate the cal-
culation error associated with ICIM.

The SPP transmission behaviour as calculated by
ICIM and MEM in a Type II structure is plotted in Fig-
ures 8 and 9. This kind of structure was also studied in
references [13,14].
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Fig. 7. (Color online) The SPP transmission and reflection in a Type I structure with parameter x
(2)
1 = 0.6 μm,[

w(1), w(2), w(3)
]

= [0.1, 0.8, 0.1] μm,
[
Q(0), Q(1), Q(2)

]
= [−1, 0, 0.1] μm, see the inset of (a). (a) Convergence test for MEM;

(b) convergence test for FDTD relative to MEM where the x-axis is a part of (a) for x
(1)
1 ∈ [0.7, 0.8] μm.

Fig. 8. Comparison of the SPP transmission by MEM and ICIM of a Type II structure under the variation of w(2) and q(2).

The left sides of the slits in all layers are aligned to x
(l)
1 = 0.6 μm.

[
w(1), w(2), w(3)

]
=

[
0.1, w(2), 0.1

]
μm,

[
Q(0), Q(1), Q(2)

]
=

[
−1, 0, q(2)

]
μm. (a) |T MEM

1 | by MEM; (b) |T ICIM
1 | by ICIM; (c) absolute value of the difference between MEM and ICIM,

∣
∣|T MEM

1 | − |T ICIM
1 |∣∣ for q(2) < 0.46 μm.

In Figure 8 the SPP transmission is plotted as a func-
tion of the height and width of Layer 2 under a fixed
incident wavelength, λ0 = 1 μm. In Figure 8a, the cal-
culated results of MEM can be approximately divided
into three areas A, B, and C by dotted lines. In Area
A, a regular oscillating pattern is observed because when
w(2) < 0.4 μm only one SPP mode propagates in Layer 2
and forms the FP-like oscillation [5,6]. In Areas B and C,
however, where the higher modes also contribute to trans-
mission, the transmission pattern becomes complicated.
Intuitively, there are two ways for higher modes to trans-

port energy. One is by way of a propagation mode, which
is appropriate for w(2) > 0.46 μm because the 2nd mode
in Layer 2 becomes propagating. The other is by way of an
evanescent mode, which is appropriate for 0.4 < w(2) <
0.46 μm and Area C because the 2nd mode in Layer 2 does
not attenuate to a negligible value in such a modulated slit
and transports energy through Layer 2.

The results from ICIM shown in Figure 8b can be
explained according to whether q(2) is larger or smaller
than 0.46 μm. When q(2) > 0.46 μm, more than one
mode is allowed to propagate in the stub while the ICIM
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Fig. 9. Comparison of the SPP transmission by MEM and ICIM of a Type II structure under the variation of w(2) and

wavelength λ0. The left sides of the slits in all layers are aligned to x
(l)
1 = 0.6 μm.

[
w(1), w(2), w(3)

]
=

[
0.1, w(2), 0.1

]
μm,

[
Q(0), Q(1), Q(2)

]
= [−1, 0, 0.1] μm. (a) |T MEM

1 | by MEM; (b) |T ICIM
1 | by ICIM; (c) absolute value of the difference between

MEM and ICIM,
∣
∣|T MEM

1 | − |T ICIM
1 |∣∣.

assumes only the SPP mode, which results in the great
difference relative to the MEM results, leading to to-
tally different patterns between Figures 8a and 8b. When
q(2) < 0.46 μm, the difference

∣
∣|TMEM

1 | − |T ICIM
1 |∣∣ is

plotted in Figure 8c. In this region, the difference is mainly
caused by the neglect of the phase shifts in the cen-
tral scattering region, which indicates that these phase
shifts have to be taken into account in the calculation.
In Figure 8c, it is seen that when the length of Layer 2
is less than 0.03 μm, i.e. less than 1/30 of the incident
wavelength, the difference becomes larger due to the en-
ergy transported by evanescent modes. This demonstrates
that consideration of a very narrow region cannot guar-
antee accurate results. Thus, the application of the quasi-
statistic approximation in a modulated metal slit requires
an optimum geometry in order to provide relatively ac-
curate results: the incident wavelength is nearly 10 times
larger than the stub width.

In order to test the optimum geometry, the slit width of
Layer 2 and the incident wavelength λ0 are considered as
variables and the length of Layer 2 is set as q(2) = 0.1 μm,
the same as the slit widths in Layers 1 and 3. The MEM
results in Figure 9a exhibit a few straight black bands
indicating the inverse-proportional relationship between
frequency and stub width which was mentioned in refer-
ences [8,9]. For ICIM, similar results are obtained in Fig-
ure 9b. The difference of these two figures is plotted in
Figure 9c. Clearly, the calculation error of ICIM in this
case is lower than that in Figure 8c. Although a small
deviation takes place near the absorption peaks, ICIM

successfully predicts the positions of the peaks. All these
numerical results confirm that the ICIM can provide rel-
atively accurate results when the incident wavelength is
around 10 times the stub width.

It is worth emphasising that each method has its own
advantages in certain respects. For example, FDTD can
provide a visualisation of the transmission process in the
time domain and ICIM is indubitably the fastest calcu-
lation method available. Here we simply point out that
these methods should be used with caution and due con-
sideration of the convergence and accuracy.

4 Conclusion

In this paper, the MEM developed in reference [6] has
been improved to make it a more practical and efficient
method for handling the scattering/transmission. Using
this method, the scattering in a juncture structure and the
transmission inside a step-modulated slit was investigated.

Firstly, the scattering in a juncture structure was stud-
ied for two types of structural changes. For the Type I
change where the widths of the two slits are fixed and the
position of the narrower one can be anywhere within the
wider one, the excitation efficiencies of the modes in the
wider slit resemble their eigenfunctions respectively, while
in the narrower slit the excitation efficiency of the SPP
mode is dominant and much larger than that of the second
mode. For the Type II change where the left walls of the
slits are aligned and one slit gradually becomes wider, a
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wood-anomaly-like drastic change of excitation efficiencies
is observed when the propagation property of one mode
begins to transform.

Next, the transmission inside a step-modulated slit
was studied. In addition to the MEM calculation, we pre-
sented explicitly a multi-mode multi-reflection model to
reveal the transmission process. The multi-mode excita-
tion and the superposition procedure of the scatterings
from all possible modes are the key parts of the model,
which represent the interference and energy transfer oc-
curring at layer boundaries. However, it was demonstrated
that there exists a critical height of the modulated layer
for applying the model due to the coupling between prop-
agation modes and evanescent modes. Above this critical
height, the model can provide the same result as the MEM
calculation.

Finally, some commonly used methods were compared
with MEM. The following useful conclusions about these
methods were obtained: for a subwavelength metal slit,
MEM is a versatile and fast method that can provide ac-
curate results; FDTD has a relatively slow convergence
and needs a very small Yee cell to ensure the accuracy
of the simulation; ICIM incorporating the one mode and
quasi-statistic approximations provides relatively accurate
results when the incident wavelength is around 10 times
larger than the stub width.
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No. 2011CB301801) and the National Natural Science Foun-
dation of China (Grant No. 10874124), and (Grant No.
11074145).
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