Skip to main content
Log in

Arbitrary magnetosonic solitary waves in spin 1/2 degenerate quantum plasma

  • Regular Article
  • Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Linear and nonlinear compressional magnetosonic waves are studied in magnetized degenerate spin-1/2 Fermi plasmas. Starting from the basic equations of a quantum magnetoplasma we develop the system of quantum magnetohydrodynamic (QMHD) equations. Spin effects are incorporated via spin force and macroscopic spin magnetization current. Sagdeev potential approach is employed to derive the nonlinear energy integral equation which admits the rarefactive solitary structure in the subAlfvenic region. The quantum diffraction due to Bohm potential does not affect the amplitude of soliton but has a direct effect on its width. The width of soliton is broadened with the increase in the quantization of the system due to quantum diffraction. However, the nonlinear wave amplitude is reduced with the increase in the value of magnetization energy due to electron spin-1/2 effects. The degeneracy effect due to quantum plasma beta enhances the amplitude of magnetosonic soliton. The importance of the work relevant to compact astrophysical bodies is pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Anderson, B. Hall, M. Lisak, M. Marklund, Phys. Rev. E 65, 046417 (2002)

    Article  ADS  Google Scholar 

  2. M. Marklund, Phys. Plasmas 12, 082110 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  3. P.R. Holland, The Quantum Theory of Motion (Cambridge University Press, Cambridge, 1993)

  4. F. Haas, M. Marklund, G. Brodin, J. Zamanian, Phys. Lett. A 374, 481 (2010)

    Article  ADS  Google Scholar 

  5. M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 591 (2006)

    Article  ADS  Google Scholar 

  6. F. Haas, G. Manfredi, M.R. Feix, Phys. Rev. E 62, 2763 (2000)

    Article  ADS  Google Scholar 

  7. S.V. Vladimirov, Yu.O. Tyshetskiy, Phys. Uspekhi (2011), in press

  8. F. Haas, Phys. Plasmas 12, 062117 (2005)

    Article  ADS  Google Scholar 

  9. M. Marklund, G. Brodin, Phys. Rev. Lett. 98, 25001 (2007)

    Article  ADS  Google Scholar 

  10. G. Brodin, M. Marklund, New J. Phys. 9, 277 (2007)

    Article  Google Scholar 

  11. M. Marklund, B. Eliasson, P.K. Shukla, Phys. Rev. E 76, 067401 (2007)

    Article  ADS  Google Scholar 

  12. G. Brodin, M. Marklund, Phys. Plasmas 14, 112107 (2007)

    Article  ADS  Google Scholar 

  13. A. Mushtaq, A. Qamar, Phys. Plasmas 16, 022301 (2009)

    Article  ADS  Google Scholar 

  14. A. Mushtaq, S.V. Vladimirov, Phys. Plasmas 17, 102310 (2010)

    Article  ADS  Google Scholar 

  15. M. Stefan, G. Brodin, M. Marklund, New J. Phys. 12, 013006 (2010)

    Article  ADS  Google Scholar 

  16. N. Shukla, G. Brodin, M. Marklund, P.K. Shukla, L. Stenflo, Phys. Plasmas 16, 072114 (2009)

    Article  ADS  Google Scholar 

  17. P.K. Shukla, J. Plasma Phys. 74, 107 (2008)

    ADS  Google Scholar 

  18. P.K. Shukla, L. Stenflo, J. Plasma Physics 74, 719 (2008)

    Article  ADS  Google Scholar 

  19. C. Kittel, Introduction to Solid State Physics, 8th edn. (John Wiley & Sons, New York, 2005), p. 317

  20. J.P. Goedbloed, S. Poedts, Principles of Magnetohydrodynamics (Cambridge University Press, Cambridge, UK, 2004), p. 57

  21. L. Landau, E.M. Lifshitz, Statistical Physics (Pergamon Press, 1980), p. 167

  22. R.K. Pathria, Statistical Mechanics (Butterworth-Heinemann, Oxford, 1996), p. 202

  23. L. Landau, Z. Phys. 64, 629 (1930)

    Article  ADS  Google Scholar 

  24. N.F. Cramer, The Physics of Alfvén Waves (Wiley-VCH Verlag, Berlin, Germany, 2001), p. 30

  25. P.M.S. Blackett, Nature 159, 658 (1947)

    Article  ADS  Google Scholar 

  26. V.L. Ginzburg, Sov. Phys. Dokl. 9, 329 (1954)

    ADS  Google Scholar 

  27. D. Koester, G. Chanmugam, Rep. Prog. Phys. 53, 837 (1990)

    Article  ADS  Google Scholar 

  28. G. Chabrier, D. Saumon, A.Y. Potekhin, J. Phys. A 39, 4411 (2006)

    Article  ADS  Google Scholar 

  29. T. Padmanabhan, Theoretical Astrophysics: Stars, Stellar Systems (Cambridge University Press, London, 2001), Vol. II

  30. G. Chabrier, F. Douchin, A.Y. Potekhin, J. Phys: Condens. Matter 14, 9133 (2002)

    Article  ADS  Google Scholar 

  31. P.A. Bradley, D.E. Winget, M.A. Wood, Astrophys. J. 406, 661 (1993)

    Article  ADS  Google Scholar 

  32. P.A. Bradley, D.E. Winget, Astrophys. J. 75, 463 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mushtaq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mushtaq, A., Vladimirov, S.V. Arbitrary magnetosonic solitary waves in spin 1/2 degenerate quantum plasma. Eur. Phys. J. D 64, 419–426 (2011). https://doi.org/10.1140/epjd/e2011-20374-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2011-20374-x

Keywords

Navigation