Skip to main content
Log in

Light scattering from a magnetically tunable dense random medium with dissipation: ferrofluid

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We present a semi-phenomenological treatment of light transmission through and its reflection from a ferrofluid which we regard as a magnetically tunable system of dense random dielectric scatterers with dissipation. Partial spatial ordering is introduced by the application of a transverse magnetic field that superimposes a periodic modulation on the dielectric randomness. This causes Bragg scattering that effectively enhances the scattering due to the disorder alone, and thus reduces the elastic mean free path towards Anderson localization. A theoretical treatment, based on invariant imbedding, gives a simultaneous decrease of the transmission and the reflection without change of incident linear polarisation as the spatial order is tuned magnetically to the Bragg condition, namely the light wave vector being equal to half the Bragg vector (Q). Our experimental observations are in qualitative agreement with these results. We have also given expressions for the transit (sojourn) time of the light, and for the light energy stored in the random medium under a steady illumination. The ferrofluid thus provides an interesting physical realization of effectively a “Lossy Anderson-Bragg” (LAB) cavity with which to study the effect of interplay of the spatial disorder, partial order and the dissipation on light transport. Given current interests in the light propagation, optical limiting and the storage of light in ferrofluids, the present work seems topical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.E. Rosensweig, Ferrohydrodynamics (Cambridge University Press, 1985), p. 344

  2. S.S. Nair, J. Thomas, C.S.S. Sandeep, M.R. Anantharaman, R. Philip, Appl. Phys. Lett. 92, 171908 (2008)

    Article  ADS  Google Scholar 

  3. C.Y. Hong, J. Magn. Magn. Mater. 201, 178 (1999)

    Article  ADS  Google Scholar 

  4. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  5. P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Academic Press, New York, 1995)

  6. M. Graham, C.J. Adkins, H. Behar, R. Rosenblaum, J. Phys.: Condens. Matter 10, 809 (1998)

    Article  ADS  Google Scholar 

  7. S. John, Phys. Today 44, 32 (1991)

    Article  ADS  Google Scholar 

  8. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  9. A. Candiani, M. Konstantaki, W. Margulis, S. Pissadakis, Opt. Express 18, 24654 (2010)

    Article  ADS  Google Scholar 

  10. N. Kumar, Phys. Rev. B 31, 5513 (1985)

    Article  ADS  Google Scholar 

  11. R. Ramal, B. Doucot, J. Phys. 48, 509 (1987)

    Article  Google Scholar 

  12. V. Finazzi, M.N. Zervas, Appl. Opt. 41, 2240 (2002)

    Article  ADS  Google Scholar 

  13. B.A. van Tiggelen, R. Maynard, Th.M. Nieuwenhuizen, Phys. Rev. E 53, 2881 (1996)

    Article  ADS  Google Scholar 

  14. V.S. Abraham, S. Nair, S. Rajesh, U.S. Sajeev, M.R. Anantharaman, Bull. Mater. Sci. 27, 155 (2004)

    Article  Google Scholar 

  15. K. Butter, P.H. Bomans, P.M. Frederik, G.J. Vroege, A.P. Philipse, Nature Mater. 2, 88 (2003)

    Article  ADS  Google Scholar 

  16. J. Li, X. Liu, Y. Lin, X. Qui, X. Ma, Y. Huang, J. Phys. D 37, 3357 (2004)

    Article  ADS  Google Scholar 

  17. J. Li, X. Liu, Y. Lin, L. Bai, Q. Li, X. Chen, Appl. Phys. Lett. 91, 253108 (2007)

    Article  ADS  Google Scholar 

  18. A. Schlegel, S.F. Alvarado, P. Wachter, J. Phys. C 12, 1157 (1979)

    Article  ADS  Google Scholar 

  19. S. Anantha Ramakrishna, N. Kumar, Phys. Rev. B 61, 3163 (2000)

    Article  ADS  Google Scholar 

  20. R.V. Mehta, R. Patel, R. Desai, R.V. Upadhyay, K. Parekh, Phys. Rev. Lett. 96, 127402 (2006)

    Article  ADS  Google Scholar 

  21. See however, H. Ramachandran, N. Kumar, Phys. Rev. Lett. 100, 229703 (2008)

    Article  ADS  Google Scholar 

  22. J.M. Laskar, J. Philip, R. Baldev, Phys. Rev. E 78, 031404 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hema Ramachandran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shalini, M., Sharma, D., Deshpande, A.A. et al. Light scattering from a magnetically tunable dense random medium with dissipation: ferrofluid. Eur. Phys. J. D 66, 30 (2012). https://doi.org/10.1140/epjd/e2011-20368-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2011-20368-8

Keywords

Navigation