Skip to main content
Log in

Structural evolution study of 1−2 nm gold clusters

  • Regular Article
  • Clusters and Nanostructures
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We have explored lowest energy minima structures of gold atom clusters both, charged and neutral (Au\hbox{$_{n}^{\nu}$}νn with n = 20, 28, 34, 38, 55, 75, 101, 146, 147, 192, 212 atoms and ν = 0, ±1). The structures have been obtained from first principles generalized gradient approximation, density functional theory (DFT) calculations based on norm-conserving pseudopotentials and numerical atomic basis sets. We have found two new disordered or defective isomers lower in energy than their ordered counterparts for n = 101, 147. The purpose of this work is to systematically study the difference between the electronic properties of the two lowest ordered and disordered isomers for each size. Our results agree with previous first principle calculations and with some recent experimental results (Au20 and Au101). For each case we report total energies, binding energies, ionization potentials, electron affinities, density of states, highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps, Housdorff chirality measure index and their simulated image in a high resolution transmission electron microscopy (HRTEM). The calculated properties of the two low lying (ordered and disordered) isomers show clear differences as to be singled out in a suitable experimental setting. An extensive discussion on the evolution with size of the cohesive energy, the ionization potentials, the electron affinities, the HOMO-LUMO gaps and their index of chirality to determine the crossover between them is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Lidgi-Guigui, C. Leung, R.E. Palmer, Surf. Sci. 602, 1006 (2008)

    Article  ADS  Google Scholar 

  2. R.E. Palmer, C. Leung, Trends Biotechnol. 25, 48 (2006)

    Article  Google Scholar 

  3. R.P. Andres, T. Bein, M. Dorogi, S. Feng, J.I. Henderson, C.P. Kubiak, W. Mahoney, R.G. Osifchin, R. Reiefenberger, Science 272, 1323 (1996)

    Article  ADS  Google Scholar 

  4. R.P. Andres, J.D. Bielefeld, J.I. Henderson, D.B. Janes, V.R. Kolagunta, C.P. Kubiak, W.J. Mahoney, R.G. Osifchin, Science 273, 1690 (1996)

    Article  ADS  Google Scholar 

  5. P. Alivisatos, K.P. Johnsson, X. Peng, T.E. Wilson, C.J. Loweth, M.P. Bruchez, P.G. Schultz, Nature 382, 609 (1996)

    Article  ADS  Google Scholar 

  6. A.P. Alivisatos, Science 271, 933 (1996)

    Article  ADS  Google Scholar 

  7. P. Alivisatos, Nat. Biotechnol. 22, 47 (2004)

    Article  Google Scholar 

  8. M. Haruta, Catal. Today 36, 153 (1997)

    Article  Google Scholar 

  9. R.J.C. Batista, H. Chacham, M.S.C. Mazzoni, I.L. Garzón, M.R. Beltrán, Phys. Rev. Lett. 96, 116802 (2006)

    Article  ADS  Google Scholar 

  10. R.J.C. Batista, P. Ordejón, H. Chacham, E. Artacho, Phys. Rev. B 75, 041402 (2007)

    Article  ADS  Google Scholar 

  11. A. Sanchez, S. Abbet, U. Heiz, W.D. Schneider, H. Häkkinen, R.N. Barnett, U. Landman. J. Phys. Chem. A 103, 9573 (1999)

    Article  Google Scholar 

  12. T.P. Martin, Phys. Rev. 273, 199 (1993)

    Google Scholar 

  13. S.J.L. Billinge, I. Levin, Science 316, 561 (2007)

    Article  ADS  Google Scholar 

  14. P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell, R.D. Kornberg, Science 318, 430 (2007)

    Article  ADS  Google Scholar 

  15. O. Lopez-Acevedo, H. Tsunoyama, T. Tsukuda, H. Häkkinen, C.M. Aikens, J. Am. Chem. Soc. 132, 8210 (2010)

    Article  Google Scholar 

  16. G. Chen, Q. Wang, Q. Sun, Y. Kawazoe, P. Jena, J. Chem. Phys. 132, 194306 (2010)

    Article  ADS  Google Scholar 

  17. J. Wang, G. Wang, J. Zhao, Phys. Rev. B 66, 035418 (2002)

    Article  ADS  Google Scholar 

  18. S. Bulusu, X. Li, S. Wang, X.C. Zeng, Porc. Natl. Acad. Sci. USA 103, 8326 (2006)

    Article  ADS  Google Scholar 

  19. S. Bulusu, X.C. Zeng, J. Chem. Phys. 125, 154303 (2006)

    Article  ADS  Google Scholar 

  20. X. Xing, B. Yoon, U. Landman, J.H. Parks, Phys. Rev. B 74, 165423 (2006)

    Article  ADS  Google Scholar 

  21. J.P.K. Doye, D.J. Wales, Phys. Rev. Lett. 80, 1357 (1998)

    Article  ADS  Google Scholar 

  22. J.P.K. Doye, D.J. Wales, Phys. Rev. Lett. 86, 5719 (2001)

    Article  ADS  Google Scholar 

  23. D.J. Wales, Energy Landscapes with Applications to Clusters, Biomolecules and Glasses (Cambridge University Press, Cambridge, 2003)

  24. X. Gu, M. Ji, S.H. Wei, X.G. Gong, Phys. Rev. B 70, 205401 (2004)

    Article  ADS  Google Scholar 

  25. O.D. Haberlen, S.C. Chung, N. Rosch, Ber. Bunsen-Ges. Phys. Chem. 98, 882 (1994)

    Google Scholar 

  26. I.L. Garzón, K. Michaelian, M.R. Beltrán, A. Posada-Amarillas, P. Ordejón, E. Artacho, D. Sánchez Portal, J. Soler, Phys. Rev. Lett. 81, 1600 (1998)

    Article  ADS  Google Scholar 

  27. I.L. Garzón, A. Posada-Amarillas, Phys. Rev. B 54, 11796 (1996)

    Article  ADS  Google Scholar 

  28. I.L. Garzón, K. Michaelian, M.R. Beltrán, A. Posada-Amarillas, P. Ordejón, E. Artacho, D. Sánchez Portal, J. Soler, Eur. Phys. J. D 9, 211 (1999)

    Article  ADS  Google Scholar 

  29. J.A. Ascencio, C. Gutiérrez-Wing, M.E. Espinosa, M. Marín, S. Tehuacanero, C. Zorrilla, M. José-Yacamán, Surf. Sci. 396, 349 (1998)

    Article  ADS  Google Scholar 

  30. C.L. Cleveland, U. Landman, T.G. Schaaff, M.N. Shafigullin, P.W. Stephens, R.L. Whetten, Phys. Rev. Lett. 79, 1873 (1997)

    Article  ADS  Google Scholar 

  31. R.L. Whetten, J.T. Khoury, M.M. Alvarez, S. Murthy, I. Vezmar, Z.L. Wang, P.W. Stephens, C.L. Cleveland, W.D. Luedtke, U. Landman, Adv. Mat. 8, 428 (1996)

    Article  Google Scholar 

  32. F. Baletto, R. Ferrando, A. Fortunelli, F. Montalenti, C. Mottet, J. Chem. Phys. 116, 3856 (2002)

    Article  ADS  Google Scholar 

  33. K. Michaelian, N. Rendón, I.L. Garzón, Phys. Rev. B 60, 2000 (1999)

    Article  ADS  Google Scholar 

  34. R.P. Gupta, Phys. Rev. B 23, 6265 (1981)

    Article  ADS  Google Scholar 

  35. P. Ordejón, E. Artacho, J.M. Soler, Phys. Rev. B 53, 10 441 (1996)

    Article  Google Scholar 

  36. D. Sánchez-Portal, P. Ordejón, E. Artacho, J.M. Soler, Int. J. Quantum Chem. 65, 453 (1997)

    Article  Google Scholar 

  37. E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García, J.M. Soler, Phys. Status Solidi B 215, 809 (1999)

    Article  ADS  Google Scholar 

  38. W. Khon, L.J. Sham, Phys. Rev. 140, 1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  39. J.M. Soler, M.R. Beltrán, K. Michaelian, I.L. Garzon, P. Ordejón, D. Sanchez-Portal, E. Artacho, Phys. Rev. B 61, 5771 (2000)

    Article  ADS  Google Scholar 

  40. I.L. Garzón, J.A. Reyes, J.I.L. Rodríguez Hernámdez, I. Sigal, M.R. Beltrán, K. Michaelian, Phys. Rev. B 66, 073403 (2002)

    Article  ADS  Google Scholar 

  41. I.L. Garzón, E. Artacho, M.R. Beltrán, A. García, J. Junquera, K. Michaelian, P. Ordejón, D. Sánchez-Portal, J.M. Soler, Nanotechnology 12, 126 (2001)

    Article  ADS  Google Scholar 

  42. T.G. Schaaff, R.L. Whetten. J. Phys. Chem. B 104, 2630 (2000)

    Article  Google Scholar 

  43. H. Häkkinen, M. Moseler, O. Kostko, N. Morgner, M. Astruc Hoffmann, B.V. Issendorff, Phys. Rev. Lett. 93, 093401 (2004)

    Article  ADS  Google Scholar 

  44. H. Häkkinen, M. Walter, H. Grönbeck, J. Phys. Chem. B 110, 9927 (2006)

    Article  Google Scholar 

  45. A.B. Buda, K. Mislow, J. Am. Chem. Soc. 114, 6006 (1992)

    Article  Google Scholar 

  46. A.B. Buda, T. Auf def Heyde, K. Mislow, Angew. Chem. Int. Ed. Engl. 31, 989 (1992)

    Article  Google Scholar 

  47. J. Jellinek, I.L. Garzón, Z. Phys. D 20, 239 (1991)

    Article  ADS  Google Scholar 

  48. I.L. Garzón, J. Jellinek, Z. Phys. D 20, 235 (1991)

    Article  ADS  Google Scholar 

  49. I.L. Garzón, J. Jellinek, Z. Phys. D 26, 316 (1993)

    Article  ADS  Google Scholar 

  50. K. Michaelian, Am. J. Phys. 66, 231 (1998)

    Article  ADS  Google Scholar 

  51. V. Rossato, M. Guillope, B. Legrand, Philos. Mag. A 59, 321 (1989)

    Article  ADS  Google Scholar 

  52. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  53. L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

    Article  ADS  Google Scholar 

  54. E.M. Fernández, J.M. Soler, I.L. Garzón, L.C. Balbás, Phys. Rev. B 70, 165403 (2004)

    Article  ADS  Google Scholar 

  55. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. B 77, 3865 (1996)

    Article  ADS  Google Scholar 

  56. O.F. Sankey, D.J. Niklewski, Phys. Rev. B 40, 3979 (1989)

    Article  ADS  Google Scholar 

  57. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes. The Art of Scientific Computing (Cambridge University Press, Cambridge, 1992)

  58. J.M. Soler, M.R. Beltrán, K. Michaelian, I.L. Garzón, P. Ordejón, D. Sánchez Portal, E. Artacho, Phys. Rev. B 61, 5771 (2000)

    Article  ADS  Google Scholar 

  59. A.F. Jalbout, F.F. Contreras-Torres, L.A. Pérez, I.L. Garzón, J. Phys. Chem. A 112, 353 (2008)

    Article  Google Scholar 

  60. I.E. Santizo, F. Hidalgo, L.A. Pérez, C. Noguez, I.L. Garzón, J. Phys. Chem. C 112, 17533 (2008)

    Article  Google Scholar 

  61. R.M. Olson, M.S. Gordon, J. Chem. Phys. 126, 214310 (2007)

    Article  ADS  Google Scholar 

  62. R.M. Olson, S. Varganov, M.S. Gordon, H. Metiu, S. Chretien, P. Piecuch, K. Kowalski, S. Kucharski, M. Musial, J. Am. Chem. Soc. 127, 1049 (2005)

    Article  Google Scholar 

  63. I.L. Garzón, C. Rovira, K. Michaelian, M.R. Beltrán, P. Ordejón, J. Junquera, D. Sanchez-Portal, E. Artacho, J.M. Soler, Phys. Rev. Lett. 85, 5250 (2000)

    Article  ADS  Google Scholar 

  64. A. Gómes Rodríguez, L.M. Beltrán del Rio, R. Herrera Becerra, Ultramicroscopy 110, 95 (2010)

    Article  Google Scholar 

  65. J.M. Cowley, A.F. Moodie, Acta Cryst. 10, 609 (1957)

    Article  MathSciNet  Google Scholar 

  66. R.L. Whetten, R.C. Price, Science 318, 407 (2007)

    Article  Google Scholar 

  67. X. Gu, S. Bulusu, X. Li, X.C. Zeng, J. Li, X.G. Gong, L.S. Wang, J. Phys. Chem. C 111, 8228 (2007)

    Article  Google Scholar 

  68. J. Li, X. Li, H.J. Zhai, L.S. Wang, Science 299, 864 (2003)

    Article  ADS  Google Scholar 

  69. C. Jackschath, I. Rabin, W. Ber Bunsenges Schulz, Phys. Chem. 86, 1200 (1992)

    Google Scholar 

  70. E.S. Kryachko, F. Remacle, Int. J. Quantum Chem. 107, 2922 (2007)

    Article  ADS  Google Scholar 

  71. X. Xing, B. Yoon, U. Landman, J.H. Parks, Phys. Rev. B 74, 165423 (2006)

    Article  ADS  Google Scholar 

  72. K.J. Taylor, C.L. Pettiette-Hall, O. Cheshnovsky, R.E. Smalley, J. Chem. Phys. 96, 3319 (1992)

    Article  ADS  Google Scholar 

  73. G. Periyasami, F. Remacle, Nano Lett. 9, 3007 (2009)

    Article  ADS  Google Scholar 

  74. P. Pyykkö, Chem. Soc. Rev. 37, 1967 (2008)

    Article  Google Scholar 

  75. S.T. Arnold, J.G. Eaton, D. Patel-Misra, H.W. Sarkas, K.H. Bowen, Ion and Cluster Ion Spectroscopy and Structure (Elsevier, Amsterdam, 1988), p. 147

  76. J. Wang, G. Wang, J. Zhao, Chem. Phys. Lett. 380, 716 (2003)

    Article  ADS  Google Scholar 

  77. V.A. Spasov, Y. Shi, K.M. Ervin, Chem. Phys. 262, 75 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Beltrán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beltrán, M.R., Suárez Raspopov, R. & González, G. Structural evolution study of 1−2 nm gold clusters. Eur. Phys. J. D 65, 411–420 (2011). https://doi.org/10.1140/epjd/e2011-20273-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2011-20273-2

Keywords

Navigation