Skip to main content
Log in

A variational adiabatic hyperspherical finite element R matrix methodology: general formalism and application to H + H2 reaction

  • Regular Article
  • Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The aim of this paper is to present an efficient numerical procedure for the theoretical study of bimolecular reactions. It is based on the R matrix variational formalism and the p-version of the finite element method (p-FEM) for expanding the wave function in a finite basis set, and facilitates the development of an efficient algorithm to invert matrices that significantly reduces the computational time in R matrix calculations. We also utilise the self-consistent finite element method to optimise the elements mesh and provide faster convergence of results. We apply our methodology to the study of the collinear H + H2 process and evaluate its efficiency by comparing our results with several results previously published in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Molecular Astrophysics: State of the Art and Future Directions, edited by G.H.F. Diercksen, W.F. Huebner, P.W. Langhoff (D. Reidel, Dordrecht, 1985)

  2. Dynamics of Molecules and Chemical Reactions, edited by R.E. Wyatt, J.Z.H. Zhang (Dekker, New York, 1996)

  3. S.C. Althorpe, D.C. Clary, Ann. Rev. Phys. Chem. 54, 493 (2003)

    Article  ADS  Google Scholar 

  4. J.M. Hutson, P. Soldán, Int. Rev. Phys. Chem. 26, 1 (2007)

    Article  Google Scholar 

  5. D.C. Clary, Science 321, 789 (2008)

    Article  ADS  Google Scholar 

  6. G. Nyman, H.-G. Yu, Rep. Prog. Phys. 60, 1001 (2000)

    Article  ADS  Google Scholar 

  7. W. Hu, G.C. Schatz, J. Chem. Phys. 125, 132301 (2006)

    Article  ADS  Google Scholar 

  8. G.G. Balint-Kurti, Int. Rev. Phys. Chem. 27, 507 (2008)

    Article  Google Scholar 

  9. F.V. Prudente, J.M.C. Marques, A.M. Maniero, Chem. Phys. Lett. 474, 18 (2009)

    Article  ADS  Google Scholar 

  10. A. Kuppermann J.A. Kaye, J.P. Dwyer, Chem. Phys. Lett. 74, 257 (1980)

    Article  ADS  Google Scholar 

  11. J. Römelt, Chem. Phys. Lett. 74, 263 (1980)

    Article  ADS  Google Scholar 

  12. D.K. Bondi, J.N.L. Connor, Chem. Phys. Lett. 92, 570 (1982)

    Article  ADS  Google Scholar 

  13. A. Kuppermann, P.G. Hipes, J. Chem. Phys. 84, 5963 (1986)

    Article  ADS  Google Scholar 

  14. R.T. Pack, G.A. Parker, J. Chem. Phys. 87, 3888 (1987)

    Article  ADS  Google Scholar 

  15. J.M. Launay , M. Le Dourneuf , Chem. Phys. Lett. 163, 178 (1989)

    Article  ADS  Google Scholar 

  16. J.M. Launay , M. Le Dourneuf , Chem. Phys. Lett. 169, 473 (1990)

    Article  ADS  Google Scholar 

  17. J. Linderberg, S.B. Padkjær, Y. Öhrn, B. Vessal, J. Chem. Phys. 90, 6254 (1989)

    Article  ADS  Google Scholar 

  18. Y. Öhrn, J. Linderberg, Mol. Phys. 49, 53 (1983)

    Article  ADS  Google Scholar 

  19. X. Chapuisat, Mol. Phys. 72, 1233 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  20. A. Kuppermann, in Advances in Molecular Vibrations and Collision Dynamics (J.M. Bowman, JAI Press, Greenwich/London, 1994), Vol. 2B, p. 117

  21. V. Aquilanti, G. Capecchi, S. Cavalli, Adv. Quantum Chem. 36, 342 (1999)

    ADS  Google Scholar 

  22. V. Aquilanti , S. Cavalli , J. Chem. Soc., Faraday Trans. 93, 802 (1997)

    Google Scholar 

  23. S.K. Pogrebnya, J. Echave, D.C. Clary, J. Chem. Phys. 107, 8975 (1997)

    Article  ADS  Google Scholar 

  24. J.C. Light, in Theory of Chemical Reactions Dynamics (D.C. Clary, D. Reidel, Dordrecht, 1986), p. 215

  25. H. Le Rouzo , Am. J. Phys. 71, 273 (2003)

  26. E.P. Wigner, L. Eisenbud, Phys. Rev. 72, 29 (1947)

    Article  ADS  Google Scholar 

  27. J.L. Jackson, Phys. Rev. 83, 301 (1951)

    Article  ADS  MATH  Google Scholar 

  28. L. Hulthén, K. Fysiograf. Sällsk. Lund Förhandl 14, 257 (1944)

    Google Scholar 

  29. L. Hulthén , Ark. Mat. Astron. Fys. A 35 (1948)

  30. W. Kohn, Phys. Rev. 74, 1763 (1948)

    Article  ADS  MATH  Google Scholar 

  31. C.W. McCurdy, T.N. Rescigno, B.I. Schneider, Phys. Rev. A 36, 2061 (1987)

    Article  ADS  Google Scholar 

  32. B.I. Schneider, Chem. Phys. Lett. 31, 237 (1975)

    Article  ADS  Google Scholar 

  33. J. Linderberg, Int. J. Quant. Chem. 35, 801 (1989)

    Article  Google Scholar 

  34. J. Linderberg, Comp. Phys. Rep. 6, 209 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  35. J.J. Soares Neto , J. Linderberg, J. Chem. Phys. 95, 8022 (1991)

    Article  ADS  Google Scholar 

  36. J. Linderberg , J. Chem. Soc., Faraday Trans. 93, 893 (1997)

    Article  Google Scholar 

  37. J. Linderberg, Adv. Quantum Chem. 32, 315 (1998)

    Article  ADS  Google Scholar 

  38. L.R. Ram-Moham, Finite Element and Boundary Element Applications in Quantum Mechanics (Oxford University Press, New York, 2002)

  39. R. Jaquet, Comput. Phys. Commun. 58, 257 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  40. J.J. Soares Neto , F.V. Prudente, Theor. Chim. Acta 89, 415 (1994)

    Article  Google Scholar 

  41. T.J. Dudley, R.R. Pandey, P.E. Staffin, M.R. Hoffmann, G.C. Schatz, J. Chem. Phys. 114, 6166 (2001)

    Article  ADS  Google Scholar 

  42. M. Salci, S.B. Levin, N. Elander, E. Yarevsky, J. Chem. Phys. 129, 134304 (2008)

    Article  ADS  Google Scholar 

  43. R. Jaquet, Theor. Chim. Acta. 71, 425 (1987)

    Article  Google Scholar 

  44. R. Jaquet, Chem. Phys. 118, 17 (1987)

    Article  ADS  Google Scholar 

  45. J. Linderberg, B. Vessal, Int. J. Quant. Chem. 31, 65 (1987)

    Article  Google Scholar 

  46. G.A. Parker, R.T. Pack, B.J. Archer, R.B. Walker, Chem. Phys. Lett. 137, 564 (1987)

    Article  ADS  Google Scholar 

  47. F.V. Prudente , J.J. Soares Neto , Chem. Phys. Lett. 309, 471 (1999)

    Article  ADS  Google Scholar 

  48. O. Chuluunbaatar, A.A. Gusev, M.S. Kaschiev, V.A. Kaschieva, A. Amaya-Tapia, S.Y. Larsen, S.I. Vinitsky, J. Phys. B At. Mol. Opt. Phys. 39, 243 (2006)

    Article  ADS  Google Scholar 

  49. J.E. Pask, B.M. Klein, P.A. Sterne, C.Y. Fong, Comput. Phys. Commun. 135, 1 (2001)

    Article  ADS  MATH  Google Scholar 

  50. M.N. Guimarães, F.V. Prudente, J. Phys. B At. Mol. Opt. Phys. 38, 2811 (2005)

    Article  ADS  Google Scholar 

  51. L. Yang, D. Heinemann, D. Kolb, Chem. Phys. Lett. 192, 499 (1992)

    Article  ADS  Google Scholar 

  52. R. Alizadegan, K.J. Hsia, T.J. Martinez, J. Chem. Phys. 132, 034101 (2010)

    Article  ADS  Google Scholar 

  53. J.J. Soares Neto , J. Comput. Chem. 15, 144 (1994)

    Article  Google Scholar 

  54. D.T. Colbert, W.H. Miller, J. Chem. Phys. 96, 1982 (1992)

    Article  ADS  Google Scholar 

  55. S.C. Althorpe , D.J. Kouri , D.K. Hoffman , J.Z.H. Zhang , J. Chem. Soc., Faraday Trans. 93, 703 (1997)

    Article  Google Scholar 

  56. Y. Huang, S.S. Iyengar, D.J. Kouri, D.K. Hoffman, J. Chem. Phys. 105, 927 (1996)

    Article  ADS  Google Scholar 

  57. A. Jäckle, H.-D. Meyer, J. Chem. Phys. 102, 5605 (1995)

    Article  ADS  Google Scholar 

  58. B. Poirier, W.H. Miller, Chem. Phys. Lett. 265, 77 (1997)

    Article  ADS  Google Scholar 

  59. S.K. Gray, G.G. Balint-Kurti, J. Chem. Phys. 108, 950 (1998)

    Article  ADS  Google Scholar 

  60. S. Li, G. Li, H. Guo, J. Chem. Phys. 115, 9637 (2001)

    Article  ADS  Google Scholar 

  61. H. Zhang, S.C. Smith, J. Chem. Phys. 120, 1161 (2004)

    Article  ADS  Google Scholar 

  62. H. Han, P. Brumer, J. Chem. Phys. 122, 144316 (2005)

    Article  ADS  Google Scholar 

  63. C. Venkataraman, W.H. Miller, J. Chem. Phys. 126, 094104 (2007)

    Article  ADS  Google Scholar 

  64. L.R. Pettey, R.E. Wyatt, J. Phys. Chem. A 112, 13335 (2008)

    Article  Google Scholar 

  65. R.R. Khorasani, R.S. Dumont, J. Chem. Phys. 129, 034110 (2008)

    Article  ADS  Google Scholar 

  66. B. Poirier, J. Chem. Phys. 129, 084103 (2008)

    Article  ADS  Google Scholar 

  67. H. Schwetlick, J. Zimmer, J. Chem. Phys. 130, 124106 (2009)

    Article  ADS  Google Scholar 

  68. A. Goussev, R. Schubert, H. Waalkens, S. Wiggins, J. Chem. Phys. 131, 144103 (2009)

    Article  ADS  Google Scholar 

  69. M. Ragni, A.C.P. Bitencourt, V. Aquilanti, Prog. Theor. Chem. Phys. 16, 133 (2007)

    Google Scholar 

  70. A. Kuppermann, J. Phys. Chem. 100, 2621 (1996)

    Article  Google Scholar 

  71. F.T. Smith, Phys. Rev. 120, 1058 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  72. V. Aquilanti, S. Cavalli, D. De Fazio, J. Chem. Phys. 109, 3792 (1998)

    Article  ADS  Google Scholar 

  73. V. Aquilanti, S. Cavalli, D. De Fazio, A. Volpi, A. Aguilar, X. Gimenez, J.L. Maria, J. Chem. Phys. 109, 3805 (1998)

    Article  ADS  Google Scholar 

  74. J.M. Launay, Theor. Chim. Acta 79, 183 (1991)

    Article  Google Scholar 

  75. R.B. Walker, E.F. Haynes, in Theory of Chemical Reactions Dynamics (D.C. Clary, D. Reidel, Dordrecht, 1986), p. 105

  76. F.V. Prudente , J.J. Soares Neto , Chem. Phys. Lett. 302, 43 (1999)

    Article  ADS  Google Scholar 

  77. D.G. Thuhlar, C.J. Horowitz, J. Chem. Phys. 68, 2466 (1978)

    Article  ADS  Google Scholar 

  78. E.M. Nascimento, F.V. Prudente, M.N. Guimarães, A.M. Maniero, J. Phys. B At. Mol. Opt. Phys. 44, 015003 (2011)

    Article  ADS  Google Scholar 

  79. D.K. Bondi, J.N.L. Connor, J. Chem. Phys. 82, 4383 (1985)

    Article  ADS  Google Scholar 

  80. M. Hankel, S.C. Smith, S.K. Gray, G.G. Balint-Kurti, Comput. Phys. Commun. 179, 569 (2008)

    Article  ADS  MATH  Google Scholar 

  81. D. Skouteris, J.F. Castillo, D.E. Manolopoulos, Comput. Phys. Commun. 133, 128 (2000)

    Article  ADS  MATH  Google Scholar 

  82. C. Shin, S. Shin, J. Chem. Phys. 113, 6528 (2000)

    Article  ADS  Google Scholar 

  83. H. Nakamura, J. Phys. Chem. A 110, 10929 (2006)

    Article  Google Scholar 

  84. T. Seideman, J. Chem. Phys. 98, 1989 (1993)

    Article  ADS  Google Scholar 

  85. G.G. Hall, Matrices and Tensors (Pergamon Press, Oxford, 1963)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. V. Prudente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guimarães, M.N., Prudente, F.V. A variational adiabatic hyperspherical finite element R matrix methodology: general formalism and application to H + H2 reaction. Eur. Phys. J. D 64, 287–296 (2011). https://doi.org/10.1140/epjd/e2011-20227-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2011-20227-8

Keywords

Navigation