Skip to main content
Log in

Ab initio study of spectroscopic properties of the calcium hydride molecular ion

  • Regular Article
  • Molecular Physics and Chemical Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In the present work, all adiabatic potential energy curves, spectroscopic constants and dipole moments of CaH+ molecular ion dissociating below the ionic limit Ca2+H are presented. These curves are determined by an ab initio approach involving a non-empirical pseudo-potential for the Ca core, core-valence correlation accounted in operator form with two types of core polarization potentials (CPP) and full valence Configuration Interaction. The molecule is thus treated as a two-electron system. The potential energy curves and the spectroscopic constants are presented. In addition, the permanent and transition dipole moments are calculated for most of the states and reveal the underlying ionic states. A rather good agreement with the available theoretical works in the literature is obtained for the spectroscopic constants of the lowest states of the CaH+ molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.P. Snow, in Interstellar Molecules, Proceeding of the IAU Symposium, edited by B.H. Andrew (Reidel, Dordrecht, 1992), p. 247

  2. L.E. Snyder, in Astrochemistry of Cosmic Phenomena, Proceedings of the IAU Symposium, edited by P.D. Singh (Kluwer Academic, Dordecht, 1992), p. 427

  3. C. Arpigny, F. Dossin, J. Manfroid, P. Magain, A.C. Danks, D.L. Lambert, C. Sterken, The Messenger 45, 8 (1986)

    ADS  Google Scholar 

  4. K. Sinha, Proc. Astron. Soc. Australia 9, 32 (1991)

    ADS  Google Scholar 

  5. J. Dufay, in Introduction to Astrophysics: The Stars (Dover, New York, 1964), p. 142

  6. E. Anders, N. Gresvesse, Geochim. Cosmochim. Acta 53, 197 (1989)

    Article  ADS  Google Scholar 

  7. C.W. Allen, in Astrophysical Quantities (Athlone, University of London, London, 1973), p. 37

  8. K. Sinha, B.M. Tripathi, R.M. Atalla, P.D. Singh, Sol. Phys. 115, 221 (1988)

    Article  ADS  Google Scholar 

  9. N. Honlou, M. Tkagi, M. Makita, K. Ohno, J. Phys. Soc. Jpn 50, 2095 (1981)

    Article  ADS  Google Scholar 

  10. G. Jeung, J.D. Daudey, J.P. Malrieu, Chem. Phys. Lett. 98, 433 (1983)

    Article  ADS  Google Scholar 

  11. P. Fuentealba, O. Reyes, H. Stoll, H. Preuss, J. Chem. Phys. 87, 5338 (1987)

    Article  ADS  Google Scholar 

  12. L.G.H. Pettersson, P.E.M. Siegbahn, S. Ismail, Chem. Phys. 82, 355 (1983)

    Article  Google Scholar 

  13. G. Chambaud, B. Levy, J. Phys. B 22, 3155 (1989)

    Article  ADS  Google Scholar 

  14. B. Peart, J.G. Stevenson, K.T. Dolder, J. Phys. B 6, 146 (1973)

    Article  ADS  Google Scholar 

  15. I.C. Lyon, B. Peart, J.B. West, K. Dolder, J. Phys. B 19, 4137 (1986)

    Article  ADS  Google Scholar 

  16. F.J. Wuilleumier, D.J. Ederer, J.L. Picque, J. Mol. Phys. 23, 198 (1987)

    Google Scholar 

  17. F.J. Wuilleumier, J.M. Bizau, D. Cubaynes, M. Richter, Synchrotron Radiat. News 3, 10 (1990)

    Google Scholar 

  18. G. Miecznikt, K.A. Berrington, P.G. Burke, A. Hibbert, J. Phys. B At. Mol. Opt. Phys. 23, 3305 (1990)

    Article  ADS  Google Scholar 

  19. A. Boutalib, J.P. Daudey, M. El Mouhtadi, Chem. Phys. 167, 111 (1992)

    Article  Google Scholar 

  20. S. Canuto, A.C. Marcos, K. Sinha, Phys. Rev. A 48, 2461 (1993)

    Article  ADS  Google Scholar 

  21. T.S. Monteiro, G. Danby, I.L. Cooper, A.S. Dickinson, E.L. Lewis, J. Phys. B At. Mol. Opt. Phys. 21, 4165 (1988)

    Article  ADS  Google Scholar 

  22. M. Aymar, R. Guérout, M. Sahlaoui, O. Dulieu, J. Phys. B At. Mol. Opt. Phys. 42, 154025 (2009)

    Article  ADS  Google Scholar 

  23. J.B. Schilling, W.A. Goddard III, J.L. Beauchamp, J. Am. Chem. Soc. 108, 4 (1986)

    Article  Google Scholar 

  24. Ph. Durand, J.C. Barthelat, J.P. Daudey, Theor. Chim. Acta 38, 283 (1975)

    Article  Google Scholar 

  25. J.C. Barthelat, Ph. Durand, Gazz. Chim. Ital. 108, 225 (1978)

    Google Scholar 

  26. B. Huron, J.P. Malrieu, P. Rancurel, J. Chem. Phys. 58, 5745 (1973)

    Article  ADS  Google Scholar 

  27. M. Pélissier, N. Komiha, J.P. Daudey, J. Comput. Chim. 9, 298 (1988)

    Article  Google Scholar 

  28. M. Foucrault, Ph. Millie, J.P. Daudey, J. Chem. Phys. 96, 1257 (1992)

    Article  ADS  Google Scholar 

  29. P. Duplaa, F. Spiegelmann, J. Chem. Phys. 105, 1492 (1996)

    Article  ADS  Google Scholar 

  30. M. Groß, F. Spiegelmann, Eur. Phys. J. D 4, 219 (1998)

    Article  ADS  Google Scholar 

  31. R. Poteau, F. Spiegelmann, J. Mol. Spectrosc. 171, 299 (1995)

    Article  ADS  Google Scholar 

  32. S. Evangelisti, J.P. Daudey, J.P. Malrieu, Chem. Phys. 75, 91 (1983)

    Article  Google Scholar 

  33. F.X. Gadea, M. Pelissier, J. Chem. Phys. 93, 545 (1990)

    Article  ADS  Google Scholar 

  34. A. Boutalib, F.X. Gadea, J. Chem. Phys. 97, 1144 (1992)

    Article  ADS  Google Scholar 

  35. H. Berriche, F.X. Gadea, Chem. Phys. Lett. 247, 85 (1995)

    Article  ADS  Google Scholar 

  36. W. Müller, J. Flesch, W. Meyer, J. Chem. Phys. 80, 3297 (1984)

    Article  ADS  Google Scholar 

  37. J. Mitroy, J.Y. Zhang, Eur. Phys. J. D 46, 415 (2008)

    Article  ADS  Google Scholar 

  38. S. Magnier, Ph. Millié, O. Dulieu, F. Masnou-Seeuws, J. Chem. Phys. 98, 7113 (1993)

    Article  ADS  Google Scholar 

  39. W. Zrafi, B. Oujia, H. Berriche, F.X. Gadea, J. Mol. Struct. 777, 87 (2006)

    Google Scholar 

  40. NIST ASD Team, NIST Atomic Spectra National Institute of Standards and Technology, Gaithersburg, MD, USA (2008). [Online] Available: http://physics.nist.gov/PhysRefData/Handbook/Tables

  41. C.L. Pekeris, Phys. Rev. 126, 1470 (1962)

    Article  ADS  Google Scholar 

  42. F. Spiegelmann, private communication

  43. P. Fuentealba, O. Reyes, Mol. Phys. 62, 1291 (1987)

    Article  ADS  Google Scholar 

  44. R.H. McFarland, A.S. Schlachter, J.W. Stearns, B. Liu, R.E. Olson, Phys. Rev. A 26, 775 (1982)

    Article  ADS  Google Scholar 

  45. R.J. Bartlett, Ann. Rev. Phys. Chem. 32, 359 (1981)

    Article  ADS  Google Scholar 

  46. S. Wilson, in Electron Correlation in Molecules (Clarendon, Oxford, 1984)

  47. H. Croft, A.S. Dickinson, F.X. Gadea, J. Phys. B 32, 81 (1999)

    Article  ADS  Google Scholar 

  48. A.S. Dickinson, R. Poteau, F.X. Gadea, J. Phys. B 32, 5451 (1999)

    Article  ADS  Google Scholar 

  49. A.K. Belyaev, P.S. Barklem, A.S. Dickinson, F.X. Gadea, Phys. Rev. A 81, 032706 (2010)

    Article  ADS  Google Scholar 

  50. P.S. Barklem, A.K. Belyaev, A.S. Dickinson, F.X. Gadea, Astron. Astrophys. 519, A20 (2010)

    Article  ADS  Google Scholar 

  51. R. Hoffmann, J. Chem. Phys. 39, 1397 (1963)

    Article  ADS  Google Scholar 

  52. F.X. Gadea, Phys. Rev. A 43, 1160 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ghalla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habli, H., Ghalla, H., Oujia, B. et al. Ab initio study of spectroscopic properties of the calcium hydride molecular ion. Eur. Phys. J. D 64, 5–19 (2011). https://doi.org/10.1140/epjd/e2011-10689-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2011-10689-y

Keywords

Navigation