Skip to main content
Log in

Scheme for n phase gates operation and one-step preparation of highly entangled cluster state

The European Physical Journal D Aims and scope Submit manuscript

Abstract

In the system with superconducting quantum interference devices (SQUIDs) in a cavity, we propose a scheme for simultaneous implementing n phase gates and one step preparing the highly entangled cluster states based on the two-channel Raman interaction. In our scheme, the system is independent to the photon number of the cavity field, the cavity field can be initially in an arbitrary state, which is convenient for the experimental operation. The n phase gates operation and the cluster state generation are realized by using only the two lower flux states of the SQUID and the excited state would not be excited so that the influence of the decoherence due to spontaneous emission of the SQUID’s levels is possible to minimize. More importantly, the operation time of the phase gates is independent of the number n of the qubits. Finally, the experimental feasibility is also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. X. Wang et al., Phys. Rev. Lett. 86, 3907 (2001)

    Article  ADS  Google Scholar 

  2. C.P. Yang, S. Han, Phys. Rev. A 72, 032311 (2005)

    Article  ADS  Google Scholar 

  3. L.M. Duan, B. Wang, H.J. Kimble, Phys. Rev. A 72, 032333 (2005)

    Article  ADS  Google Scholar 

  4. X.M. Lin et al., Phys. Rev. A 73, 012323 (2006)

    Article  ADS  Google Scholar 

  5. C.P. Yang, Y.X. Liu, F. Nori, Phys. Rev. A 81, 062323 (2010)

    Article  ADS  Google Scholar 

  6. H.J. Briegel, R. Raussendorf, Phys. Rev. Lett. 86, 910 (2001)

    Article  ADS  Google Scholar 

  7. R. Raussendorf, H.J. Briegel, Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  8. R. Raussendorf, D.E. Browne, H.J. Briegel, J. Mod. Opt. 49, 1299 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. R. Raussendorf, H.J. Briegel, Phys. Rev. A 68, 022312 (2003)

    Article  ADS  Google Scholar 

  10. X.B. Zou, W. Mathis, Phys. Rev. A 71, 032308 (2005)

    Article  ADS  Google Scholar 

  11. A.N. Zhang, C.Y. Lu, X.Q. Zhou, Y.A. Chen, Z. Zhao, T. Yang, J.W. Pan, Phys. Rev. A 73, 022330 (2006)

    Article  ADS  Google Scholar 

  12. R. Prevedel, P. Walther, F. Tiefenbacher, P. Bohi, R. Kaltenbaek, T. Jennewein, A. Zeilinger, Nature 445, 65 (2007)

    Article  ADS  Google Scholar 

  13. C.Y. Lu et al., Nature Phys. 3, 91 (2007)

    Article  ADS  Google Scholar 

  14. G. Vallone, E. Pomarico, P. Mataloni, F. De Martini, V. Berardi, Phys. Rev. Lett. 98, 180502 (2007)

    Article  ADS  Google Scholar 

  15. K. Chen, C.M. Li, Q. Zhang, Y.A. Chen, A. Goebel, S. Chen, A. Mair, J.W. Pan, Phys. Rev. Lett. 99, 120503 (2007)

    Article  ADS  Google Scholar 

  16. G. Vallone, E. Pomarico, F. De Martini, P. Mataloni, Phys. Rev. Lett. 100, 160502 (2008)

    Article  ADS  Google Scholar 

  17. Y. Tokunaga, S. Kuwashiro, T. Yamamoto, M. Koashi, N. Lonoto, Phys. Rev. Lett. 100, 210501 (2008)

    Article  ADS  Google Scholar 

  18. P. Walther, K.J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, A. Zeilinger, Nature 434, 169 (2005)

    Article  ADS  Google Scholar 

  19. Q. Lin, B. He, Phys. Rev. A 82, 022331 (2010)

    Article  ADS  Google Scholar 

  20. S.B. Zheng, Phys. Rev. A 73, 065802 (2006)

    Article  ADS  Google Scholar 

  21. H. Wunderlich, C. Wunderlich, K. Singer, F. Schmidt-kaler, Phys. Rev. A 79, 052324 (2009)

    Article  ADS  Google Scholar 

  22. X.B. Zou, W. Mathis, Phys. Rev. A 72, 013809 (2005)

    Article  ADS  Google Scholar 

  23. D.E. Browne, T. Rudolph, Phys. Rev. Lett. 95, 010501 (2005)

    Article  ADS  Google Scholar 

  24. J. Cho, H.W. Lee, Phys. Rev. Lett. 95, 160501 (2005)

    Article  ADS  Google Scholar 

  25. P. Dong, Z.Y. Xue, M. Yang, Z.L. Cao, Phys. Rev. A 73, 033818 (2005)

    Article  ADS  Google Scholar 

  26. S.G.R. Louis, K. Nemoto, W.J. Munro, T.P. Spiller, Phys. Rev. A 75, 042323 (2007)

    Article  ADS  Google Scholar 

  27. X.L. Zhang, K.L. Gao, M. Feng, Phys. Rev. A 74, 024303 (2006)

    Article  ADS  Google Scholar 

  28. T. Tanamoto, Y.X. Liu, S. Fujita, X. Hu, F. Nori, Phys. Rev. Lett. 97, 230501 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  29. J.Q. You, X. Wang, T. Tanamoto, F. Nori, Phys. Rev. A 75, 052319 (2007)

    Article  ADS  Google Scholar 

  30. Z.Y. Xue, Z.D. Wang, Phys. Rev. A 75, 064303 (2007)

    Article  ADS  Google Scholar 

  31. G. Chen, Z. Chen, L. Yu, L. Liang, Phys. Rev. A 76, 024301 (2007)

    Article  ADS  Google Scholar 

  32. G.P. Guo, H. Zhang, T. Tu, G.C. Guo, Phys. Rev. A 75, 050301 (2007)

    Article  ADS  Google Scholar 

  33. Z.R. Lin, G.P. Guo, T. Tu, F.Y. Zhu, G.C. Guo, Phys. Rev. Lett. 101, 230501 (2008)

    Article  ADS  Google Scholar 

  34. N.C. Menicucci, S.T. Flammia, H. Zaidi, O. Pfister, Phys. Rev. A 76, R010302 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  35. N.C. Menicucci, X. Ma, T.C. Ralph, Phys. Rev. Lett. 104, 2505503 (2010)

    Article  Google Scholar 

  36. G. Li, Sha-sha Ke, Z. Ficek, Phys. Rev. A 79, 033827 (2009)

    Article  ADS  Google Scholar 

  37. X. Su, A. Tan, X. Jia, J. Zhang, C. Xie, K. Peng, Phys. Rev. Lett. 98, 070502 (2007)

    Article  ADS  Google Scholar 

  38. M. Yukawa, R. Ukai, P. van loock, A. Furusawa, Phys. Rev. A 78, 012301 (2008)

    Article  ADS  Google Scholar 

  39. C.K. Law, J.H. Eberly, Phys. Rev. Lett. 76, 1055 (1996)

    Article  ADS  Google Scholar 

  40. P. Lougovski, E. Solano, H. Walther, Phys. Rev. A 71, 013811 (2005)

    Article  ADS  Google Scholar 

  41. X.L. Feng, Z. Wang, C. Wu, L.C. Kwek, C.H. Lai, C.H. Oh, Phys. Rev. A 75, 052312 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  42. M. Franca Santos, E. Solano, R.L. de Matos Filho, Phys. Rev. Lett. 87, 093601 (2001)

    Article  ADS  Google Scholar 

  43. S.G. Clark, A.S. Parkins, Phys. Rev. Lett. 90, 047905 (2003)

    Article  ADS  Google Scholar 

  44. S.B. Zheng, Phys. Rev. A 68, 035801 (2003)

    Article  ADS  Google Scholar 

  45. C.P. Yang, Shih-I Chu, S. Han, Phys. Lett. 92, 117902 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, K.H., Zhao, Y.J., Shi, Z.G. et al. Scheme for n phase gates operation and one-step preparation of highly entangled cluster state. Eur. Phys. J. D 66, 1 (2012). https://doi.org/10.1140/epjd/e2011-10641-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2011-10641-3

Keywords

Navigation