Skip to main content
Log in

Controlling qubit arrays with anisotropic XXZ Heisenberg interaction by acting on a single qubit

  • Topical issue: Hybrid Quantum Systems – New Perspectives on Quantum State Control
  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We investigate anisotropic XXZ Heisenberg spin-1 / 2 chains with control fields acting on one of the end spins, with the aim of exploring local quantum control in arrays of interacting qubits. In this work, which uses a recent Lie-algebraic result on the local controllability of spin chains with “always-on” interactions, we determine piecewise-constant control pulses corresponding to optimal fidelities for quantum gates such as spin-flip (NOT), controlled-NOT (CNOT), and square-root-of-SWAP (). We find the minimal times for realizing different gates depending on the anisotropy parameter Δ of the model, showing that the shortest among these gate times are achieved for particular values of Δ larger than unity. To study the influence of possible imperfections in anticipated experimental realizations of qubit arrays, we analyze the robustness of the obtained results for the gate fidelities to random variations in the control-field amplitudes and finite rise time of the pulses. Finally, we discuss the implications of our study for superconducting charge-qubit arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Lloyd, A.J. Landahl, J.J.E. Slotine, Phys. Rev. A 69, 012305 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  2. D. D’Alessandro, Introduction to Quantum Control and Dynamics (Taylor & Francis, Boca Raton, 2008)

  3. V. Jurdjevic, H.J. Sussmann, J. Differ. Equ. 12, 313 (1972)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. For a recent review, see C. Brif, R. Chakrabarti, H. Rabitz, New. J. Phys. 12, 075008 (2010).

    Google Scholar 

  5. See, e.g., S. Bose, Phys. Rev. Lett. 91, 207901 (2003)

    Google Scholar 

  6. A. Romito, R. Fazio, C. Bruder, Phys. Rev. B 71, 100501(R) (2005)

    Article  ADS  Google Scholar 

  7. A.O. Lyakhov, C. Bruder, Phys. Rev. B 74, 235303 (2006)

    Article  ADS  Google Scholar 

  8. D. Burgarth, Eur. Phys. J. Special Top. 151, 147 (2007)

    Article  ADS  Google Scholar 

  9. T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V. Giovannetti, G.E. Santoro, Phys. Rev. Lett. 103, 240501 (2009)

    Article  ADS  Google Scholar 

  10. K. Maruyama, T. Iitaka, F. Nori, Phys. Rev. A 75, 012325 (2007)

    Article  ADS  Google Scholar 

  11. S.G. Schirmer, I.C.H. Pullen, P.J. Pemberton-Ross, Phys. Rev. A 78, 062339 (2008)

    Article  ADS  Google Scholar 

  12. D. Burgarth, S. Bose, C. Bruder, V. Giovannetti, Phys. Rev. A 79, 060305(R) (2009)

    ADS  Google Scholar 

  13. A. Kay, P.J. Pemberton-Ross, Phys. Rev. A 81, 010301(R) (2010)

    Article  ADS  MathSciNet  Google Scholar 

  14. D. Burgarth, K. Maruyama, M. Murphey, S. Montangero, T. Calarco, F. Nori, M.B. Plenio, Phys. Rev. A 81, 040303(R) (2010)

    Article  ADS  Google Scholar 

  15. X. Wang, A. Bayat, S.G. Schirmer, S. Bose, Phys. Rev. A 81, 032312 (2010)

    Article  ADS  Google Scholar 

  16. R. Heule, C. Bruder, D. Burgarth, V.M. Stojanović, Phys. Rev. A 82, 052333 (2010)

    Article  ADS  Google Scholar 

  17. Y. Makhlin, G. Schön, A. Shnirman, Rev. Mod. Phys. 73, 357 (2001)

    Article  ADS  Google Scholar 

  18. L.S. Levitov, T.P. Orlando, J.B. Majer, J.E. Mooij, e-print arXiv:cond-mat/0108266v2 (2001)

  19. J.Q. You, F. Nori, Phys. Today 58, 42 (2005)

    Article  Google Scholar 

  20. T. Giamarchi, Quantum Physics in One Dimension (Clarendon Press, Oxford, 2004)

  21. S.G. Schirmer, H. Fu, A.I. Solomon, Phys. Rev. A 63, 063410 (2001)

    Article  ADS  Google Scholar 

  22. W. Pfeifer, The Lie Algebras su(N): An Introduction (Birkhäuser, Basel, 2003)

  23. T. Polack, H. Suchowski, D.J. Tannor, Phys. Rev. A 79, 053403 (2009)

    Article  ADS  Google Scholar 

  24. U. Sander, T. Schulte-Herbrüggen, e-print arXiv: 0904.4654

  25. G. Burkard, D. Loss, D.P. Di Vincenzo, J.A. Smolin, Phys. Rev. B 60, 11404 (1999)

    Article  ADS  Google Scholar 

  26. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran 77 and 90: The Art of Scientific and Parallel Computing (Cambridge University Press, Cambridge, 1997)

  27. A. Carlini, A. Hosoya, T. Koike, Y. Okudaira, Phys. Rev. A 75, 042308 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  28. C. Bruder, R. Fazio, G. Schön, Phys. Rev. B 47, 342 (1993)

    Article  ADS  Google Scholar 

  29. R. Fazio, H. van der Zant, Phys. Rep. 355, 235 (2001)

    Article  ADS  MATH  Google Scholar 

  30. Y. Makhlin, Quantum Inf. Process 1, 243 (2002)

    Article  MathSciNet  Google Scholar 

  31. S. Montangero, T. Calarco, R. Fazio, Phys. Rev. Lett. 99, 170501 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Stojanović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heule, R., Bruder, C., Burgarth, D. et al. Controlling qubit arrays with anisotropic XXZ Heisenberg interaction by acting on a single qubit. Eur. Phys. J. D 63, 41–46 (2011). https://doi.org/10.1140/epjd/e2010-10623-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-10623-y

Keywords

Navigation