Skip to main content
Log in

Index of refraction for cold lithium- and diatomic sodium waves traveling through cold noble gases

The European Physical Journal D Aims and scope Submit manuscript

Abstract.

In the present paper we propose to measure the index of refraction for diatomic sodium molecules traveling through a cold helium gas. Theoretical calculations of the index of refraction for this system are presented as a function of the molecule velocity and atom gas temperature. Whereas previous theoretical efforts to compute the refractive index have been concerned with atomic systems and atomic matter waves, we extend the investigation to diatomic molecules in the present work. To enable such calculations the potential energy surface for the atom-molecule interaction is calculated ab initio, along with the long range dispersion coefficients for the atom-molecule system. The full close-coupled equations, describing the atom-molecule collisions, are solved numerically to work out the influence of the collisions on the matter waves. We investigate the sensitivity of the results upon changes and inaccuracies in the potential energy surface. Several molecular rotational levels are included in the present study, and the index of refraction is found to depend on the rotational state. In addition, the index of refraction for atomic lithium matter waves traveling through the cold noble gases helium and argon are computed, motivated by a recent experiment with atomic lithium matter waves. Different resonances (glory- and scattering resonances) are identified from the results. Such resonances offer an important opportunity for the comparison of experiment and theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. L. de Broglie, Nature 112, 540 (1923)

    Article  ADS  Google Scholar 

  2. C.J. Davisson, I.H. Germer, Nature 119, 558 (1927)

    Article  ADS  Google Scholar 

  3. H. v. Jr Halban, P. Preiswerk, C.R. Acad. Sci. 203, 73 (1936)

    Google Scholar 

  4. D.W. Keith, C.R. Ekstrom, Q.A. Turchette, D.E. Pritchard, Phys. Rev. Lett. 66, 2693 (1991)

    Article  ADS  Google Scholar 

  5. A. Peters, K.Y. Chung, B. Young, J. Hensley, S. Chu, Philos. Trans. R. Soc. London, Ser. A 355, 2223 (1997)

    Article  ADS  Google Scholar 

  6. T.L. Gustavson, P. Bouyer, M.A. Kasevich, Phys. Rev. Lett. 78, 2046 (1997)

    Article  ADS  Google Scholar 

  7. A. Peters, K.-Y. Chung, S. Chu, Nature 400, 849 (1999)

    Article  ADS  Google Scholar 

  8. M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw, A. Zeilinger, Nature 401, 680 (1999)

    Article  ADS  Google Scholar 

  9. B. Brezger, L. Hackermuller, S. Uttenthaler, J. Petschinka, M. Arndt, A. Zeilinger, Phys. Rev. Lett. 88, 100404 (2002)

    Article  ADS  Google Scholar 

  10. J. Schmiedmayer, M.S. Chapman, C.R. Ekstrom, T.D. Hammond, S. Wehinger, D.E. Pritchard, Phys. Rev. Lett. 74, 1043 (1995)

    Article  ADS  Google Scholar 

  11. M. Jacquey, M. Buchner, G. Trenec, J. Vigue, Phys. Rev. Lett. 98, 240405 (2007)

    Article  ADS  Google Scholar 

  12. S. Blanchard, D. Civello, R.C. Forrey, Phys. Rev. A 67, 013604 (2003)

    Article  ADS  Google Scholar 

  13. R.C. Forrey, L. You, V. Kharchenko, A. Dalgarno, Phys. Rev. A 54, 2180 (1996)

    Article  ADS  Google Scholar 

  14. R.C. Forrey, L. You, V. Kharchenko, A. Dalgarno, Phys. Rev. A 55, R3311 (1997)

    Article  ADS  Google Scholar 

  15. R.C. Forrey, V. Kharchenko, A. Dalgarno, J. Phys. B 35, L261 (2002)

    Article  ADS  Google Scholar 

  16. V. Kharchenko, A. Dalgarno, Phys. Rev. A 63, 023615 (2001)

    Article  ADS  Google Scholar 

  17. S.C. Doret, C.B. Connolly, W. Ketterle, J.M. Doyle, Phys. Rev. Lett. 103, 103005 (2009)

    Article  ADS  Google Scholar 

  18. C. Champenois, Ph.D. thesis, Université P. Sabatier, Toulouse, France (1999)

  19. C. Champenois, M. Jacquey, S. Lepoutre, M. Buchner, G. Trenec, J. Vigue, Phys. Rev. A 77, 013621 (2008)

    Article  ADS  Google Scholar 

  20. A.M. Arthurs, A. Dalgarno, Proc. R. Soc. London, Ser. A 256, 50 (1960)

    Google Scholar 

  21. B.R. Johnson, J. Comput. Phys. 13, 445 (1973)

    Article  ADS  MATH  Google Scholar 

  22. D.M. Brink, G.R. Satchler, Angular Momentum (Oxford University Press, 1993)

  23. C.J. Joachain, Quantum Collision Theory (Elsevier Science Publishing Company, 1984)

  24. M.S. Child, Molecular Collision Theory (Academic Press, London and New York, 1974)

  25. U. Hohm, Chem. Phys. 179, 533 (1994)

    Article  ADS  Google Scholar 

  26. M. Lysebo, L. Veseth, Phys. Rev. A 77, 032721 (2008)

    Article  ADS  Google Scholar 

  27. C.S. Schneider, C.G. Shull, Phys. Rev. B 3, 830 (1971)

    Article  ADS  Google Scholar 

  28. R.B. Bernstein, J. Chem. Phys. 37, 1880 (1962)

    Article  ADS  Google Scholar 

  29. R.B. Bernstein, J. Chem. Phys. 38, 2599 (1963) 0.8pt

    Article  ADS  Google Scholar 

  30. T.D. Roberts, A.D. Cronin, D.A. Kokorowski, D.E. Pritchard, Phys. Rev. Lett. 89, 200406 (2002)

    Article  ADS  Google Scholar 

  31. Atom-molecule collision theory, edited by R.B. Bernstein (Plenum Press, New York, London, 1979)

  32. M.S. Chapman, C.R. Ekstrom, T.D. Hammond, R.A. Rubenstein, J. Schmiedmayer, S. Wehinger, D.E. Pritchard, Phys. Rev. Lett. 74, 4783 (1995)

    Article  ADS  Google Scholar 

  33. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Hensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Wiundus, M. Dupuis, J.A. Montgomery, J. Comput. Chem. 14, 1347 (1993)

    Article  Google Scholar 

  34. T.J. Lee, D. Jayatilaka, Chem. Phys. Lett. 201, 1 (1993)

    Article  ADS  Google Scholar 

  35. T.J. Lee, A.P. Rendell, K.G. Dyall, D. Jayatilaka, J. Chem. Phys. 100, 7400 (1994)

    Article  ADS  Google Scholar 

  36. T.H. Dunning, J. Chem. Phys. 90, 1007 (1989)

    Article  ADS  Google Scholar 

  37. D.E. Woon, T.H. Dunning, J. Chem. Phys. 103, 4572 (1995)

    Article  ADS  Google Scholar 

  38. D.E. Woon, T.H. Dunning, J. Chem. Phys. 100, 2975 (1994)

    Article  ADS  Google Scholar 

  39. M. Gutowski, F.B. van Duijneveldt, G. Chalasinski, L. Piela, Mol. Phys. 61, 233 (1987)

    Article  ADS  Google Scholar 

  40. S.F. Boys, F. Bernardi, Mol. Phys. 19, 553 (1970)

    Article  ADS  Google Scholar 

  41. J. Schmiedmayer, J.M. Chapman, C.R. Ekstrom, T.D. Hammond, D. Kokorowski, A. Lenef, R.R. Rubenstein, E. Smith, D.E. Pritchard, Atom Interferometry (Academic Press, San Diego, 1997), p. 50

  42. R. Brühl, D. Zimmermann, J. Chem. Phys. 115, 7892 (2001)

    Article  ADS  Google Scholar 

  43. D. Cvetko, A. Lausi, A. Morgante, F. Tommasini, P. Cortona, M.G. Dondi, J. Chem. Phys. 100, 2052 (1994)

    Article  ADS  Google Scholar 

  44. I.S.K. Kerkines, A. Mavridis, J. Chem. Phys. 116, 9305 (2002)

    Article  ADS  Google Scholar 

  45. J.M. Standard, P.R. Certain, J. Chem. Phys. 83, 3002 (1985)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Bjørgen, M. Lysebo or L. Veseth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjørgen, H., Lysebo, M. & Veseth, L. Index of refraction for cold lithium- and diatomic sodium waves traveling through cold noble gases. Eur. Phys. J. D 61, 593–608 (2011). https://doi.org/10.1140/epjd/e2010-10531-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-10531-2

Keywords

Navigation