Skip to main content
Log in

Quantum fluid dynamics based current-density functional study of a helium atom in a strong time-dependent magnetic field

  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

Evolution of the helium atom in a strong time-dependent (TD) magnetic field (B) of strength up to 1011 G is investigated through a quantum fluid dynamics (QFD) based current-density functional theory (CDFT). The TD-QFD-CDFT computations are performed through numerical solution of a single generalized nonlinear Schrödinger equation employing vector exchange-correlation potentials and scalar exchange-correlation density functionals that depend both on the electronic charge-density and the current-density. The results are compared with that obtained from a B-TD-QFD-DFT approach (based on conventional TD-DFT) under similar numerical constraints but employing only scalar exchange-correlation potential dependent on electronic charge-density only. The B-TD-QFD-DFT approach, at a particular TD magnetic field-strength, yields electronic charge- and current-densities as well as exchange-correlation potential resembling with that obtained from the time-independent studies involving static (time-independent) magnetic fields. However, TD-QFD-CDFT electronic charge- and current-densities along with the exchange-correlation potential and energy differ significantly from that obtained using B-TD-QFD-DFT approach, particularly at field-strengths >109 G, representing dynamical effects of a TD field. The work concludes that when a helium atom is subjected to a strong TD magnetic field of order >109 G, the conventional TD-DFT based approach differs “dynamically” from the CDFT based approach under similar computational constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A. Ullirich, J. Chem. Phys. 125, 234108 (2006)

    Article  ADS  Google Scholar 

  2. J. Tao, G. Vignale, I.V. Tokatly, Phys. Rev. B 76, 195126 (2007)

    Article  ADS  Google Scholar 

  3. N.T. Maitra, J. Chem. Phys. 122, 234104 (2005)

    Article  ADS  Google Scholar 

  4. D.J. Tozer, N.C. Handy, Phys. Chem. Chem. Phys. 2, 2117 (2000)

    Article  Google Scholar 

  5. M. Thiele, S. Kümmel, Phys. Rev. A 79, 052503 (2009)

    Article  ADS  Google Scholar 

  6. G. Wunner, H. Herold, F. Geyer, Atoms in Strong Magnetic Fields (Springer-Verlag, Berlin, 1994)

  7. V. Canuto, D.C. Kelly, Astrophys. Space Sci. 17, 277 (1972)

    Article  ADS  Google Scholar 

  8. R.J. Henry, R.F. O’Connell, E.R. Smith, G. Chanmugam, A.K. Rajagopal, Phys. Rev. D 9, 329 (1974)

    Article  ADS  Google Scholar 

  9. R.O. Mueller, A.R.P. Rau, L. Spruch, Phys. Rev. A 11, 789 (1975)

    Article  ADS  Google Scholar 

  10. D.M. Larsen, Phys. Rev. B 20, 5217 (1979)

    Article  ADS  Google Scholar 

  11. E. Müller, Astron. Astrophys. 130, 415 (1984)

    Google Scholar 

  12. Y. Chen, B. Gil, H. Mathieu, Phys. Rev. B 34, 6912 (1986)

    Article  ADS  Google Scholar 

  13. M. Vincke, D. Baye, J. Phys. B At. Mol. Opt. Phys. 22, 2089 (1989)

    Article  ADS  Google Scholar 

  14. M. Hesse, D. Baye, J. Phys. B At. Mol. Opt. Phys. 37, 3937 (2004)

    Article  ADS  Google Scholar 

  15. D. Baye, A.J. de ter Beerst, J.-M. Sparenberg, J. Phys. B At. Mol. Opt. Phys. 42, 225102 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  16. J. Virtamo, J. Phys. B 9, 751 (1976)

    Article  ADS  Google Scholar 

  17. P. Proeschel, W. Roesner, G. Wunner, H. Ruder, H. Herold, J. Phys. B 15, 1959 (1982)

    Article  ADS  Google Scholar 

  18. D. Lai, E.E. Salpeter, S.L. Shapiro, Phys. Rev. A 45, 4832 (1992)

    Article  ADS  Google Scholar 

  19. G. Thurner, H. Korbel, M. Braun, H. Herold, H. Ruder, G. Wunner, J. Phys. B At. Mol. Opt. Phys. 26, 4719 (1993)

    Article  ADS  Google Scholar 

  20. M.V. Ivanov, J. Phys. B At. Mol. Opt. Phys. 27, 4513 (1994)

    Article  ADS  Google Scholar 

  21. M.D. Jones, G. Ortiz, D.M. Ceperley, Phys. Rev. A 54, 219 (1996)

    Article  ADS  Google Scholar 

  22. Y.P. Kravchenko, M.A. Liberman, Phys. Rev. A 56, R2510 (1997)

    Article  ADS  Google Scholar 

  23. M.D. Jones, G. Ortiz, D.M. Ceperley, Phys. Rev. A 59, 2875 (1999)

    Article  ADS  Google Scholar 

  24. A. Thirumalai, J.S. Heyl, Phys. Rev. A 79, 012514 (2009)

    Article  ADS  Google Scholar 

  25. W. Becken, P. Schmelcher, F.K. Diakonos, J. Phys. B At. Mol. Opt. Phys. 32, 1557 (1999)

    Article  ADS  Google Scholar 

  26. W. Becken, P. Schmelcher, J. Phys. B At. Mol. Opt. Phys. 33, 545 (2000)

    Article  ADS  Google Scholar 

  27. W. Becken, P. Schmelcher, Phys. Rev. A 63, 053412 (2001)

    Article  ADS  Google Scholar 

  28. W. Becken, P. Schmelcher, Phys. Rev. A 65, 033416 (2002)

    Article  ADS  Google Scholar 

  29. X. Wang, H. Qiao, Phys. Rev. A 77, 043414 (2008)

    Article  ADS  Google Scholar 

  30. X. Wang, J. Zhao, H. Qiao, Phys. Rev. A 80, 053425 (2009)

    Article  ADS  Google Scholar 

  31. B.M. Relovsky, H. Ruder, Phys. Rev. A 53, 4068 (1996)

    Article  ADS  Google Scholar 

  32. M. Braun, Phys. Rev. A 65, 033415 (2002)

    Article  ADS  Google Scholar 

  33. Z. Medin, D. Lai, Phys. Rev. A 74, 062507 (2006)

    Article  ADS  Google Scholar 

  34. Vikas, B.M. Deb, Int. J. Quantum Chem. 97, 701 (2004)

    Article  Google Scholar 

  35. R.J. Magyar, Phys. Rev. B 79, 195127 (2009)

    Article  ADS  Google Scholar 

  36. H.C. Praddaude, Phys. Rev. A 6, 1321 (1972)

    Article  ADS  Google Scholar 

  37. H. Friedrich, Phys. Rev. A 26, 1827 (1982)

    Article  ADS  Google Scholar 

  38. M.V. Ivanov, J. Phys. B At. Mol. Opt. Phys. 21, 447 (1988)

    Article  ADS  Google Scholar 

  39. R. Cohen, J. Lodenquai, M. Ruderman, Phys. Rev. Lett. 25, 467 (1970)

    Article  ADS  Google Scholar 

  40. G. Ortiz, M.D. Jones, D.M. Ceperley, Phys. Rev. A 52, R3405 (1995)

    Article  ADS  Google Scholar 

  41. M.D. Jones, G. Ortiz, D.M. Ceperley, Phys. Rev. E 55, 6202 (1997)

    Article  ADS  Google Scholar 

  42. D. Lai, E.E. Salpeter, Phys. Rev. A 53, 152 (1996)

    Article  ADS  Google Scholar 

  43. O.-A. Al-Hujaj, P. Schmelcher, Phys. Rev. A 67, 023403 (2003)

    Article  ADS  Google Scholar 

  44. Vikas, Chem. Phys. Lett. 413, 216 (2005)

    Article  ADS  Google Scholar 

  45. Vikas, Chem. Phys. Lett. 458, 214 (2008)

    Article  ADS  Google Scholar 

  46. Vikas, Int. J. Quantum Chem. (2010) DOI: 10.1002/qua.22516

  47. Vikas, Int. J. Quantum Chem. (2010) DOI: 10.1002/qua.22784

  48. J. Tao, G. Vignale, Phys. Rev. B 74, 193108 (2006)

    Article  ADS  Google Scholar 

  49. N. Helbig, S. Kurth, S. Pittalis, E. Räsänen, E.K.U. Gross, Phys. Rev. B 77, 245106 (2008)

    Article  ADS  Google Scholar 

  50. R. D’Agosta, M. Di Ventra, G. Vignale, Phys. Rev. B 76, 035320 (2007)

    Article  ADS  Google Scholar 

  51. S.K. Ghosh, A.K. Dhara, Phys. Rev. A 38, 1149 (1988)

    Article  ADS  Google Scholar 

  52. C.A. Ullrich, G. Vignale, Phys. Rev. B 65, 245102 (2002)

    Article  ADS  Google Scholar 

  53. G. Vignale, Phys. Rev. B 70, 201102(R) (2004)

    Article  ADS  Google Scholar 

  54. P. Romaniello, P.L. de Boeij, Phys. Rev. B 71, 155108 (2005)

    Article  ADS  Google Scholar 

  55. U. von Barth, N.E. Dahlen, R. van Leeuwen, G. Stefanucci, Phys. Rev. B 72, 235109 (2005)

    Article  ADS  Google Scholar 

  56. M. Dion, K. Burke, Phys. Rev. A 72, 020502(R) (2005)

    ADS  Google Scholar 

  57. R. D’Agosta, G. Vignale, Phys. Rev. Lett. 96, 016405 (2006)

    Article  ADS  Google Scholar 

  58. R. D’Agosta, M. Di Ventra, Phys. Rev. B 78, 165105 (2008)

    Article  ADS  Google Scholar 

  59. V.U. Nazarov, J.M. Pitarke, Y. Takada, G. Vignale, Y.-C. Chang, Phys. Rev. B 76, 205103 (2007)

    Article  ADS  Google Scholar 

  60. G. Xianlong, M. Polini, D. Rainis, M.P. Tosi, G. Vignale, Phys. Rev. Lett. 101, 206402 (2008)

    Article  ADS  Google Scholar 

  61. M. van Faassen, P.L. de Boeij, R. van Leeuwen, J.A. Berger, J.G. Snijders, Phys. Rev. Lett. 88, 186401 (2002)

    Article  ADS  Google Scholar 

  62. B.M. Deb, S.K. Ghosh, J. Chem. Phys. 77, 342 (1982)

    Article  ADS  Google Scholar 

  63. S.K. Ghosh, B.M. Deb, Phys. Rep. 92, 1 (1982)

    Article  ADS  Google Scholar 

  64. S.K. Ghosh, B.M. Deb, Int. J. Quantum Chem. 22, 871 (1982)

    Article  Google Scholar 

  65. B.M. Deb, S.K. Ghosh, Int. J. Quantum Chem. 23, 1 (1983)

    Article  Google Scholar 

  66. B.M. Deb, P.K. Chattaraj, Phys. Rev. A 37, 4030 (1988)

    Article  ADS  Google Scholar 

  67. B.M. Deb, P.K. Chattaraj, Phys. Rev. A 39, 1696 (1989)

    Article  ADS  Google Scholar 

  68. B.K. Dey, B.M. Deb, J. Chem. Phys. 110, 6229 (1999)

    Article  ADS  Google Scholar 

  69. Vikas, Int. J. Quantum Chem. 107, 647 (2007)

    Article  ADS  Google Scholar 

  70. G. Vignale, M. Rasolt, Phys. Rev. Lett. 59, 2360 (1987)

    Article  ADS  Google Scholar 

  71. G. Vignale, M. Rasolt, Phys. Rev. B 37, 10685 (1988)

    Article  ADS  Google Scholar 

  72. S.M. Colwell, N.C. Handy, A.M. Lee, Phys. Rev. A 53, 1316 (1996)

    Article  ADS  Google Scholar 

  73. A. Holas, N.H. March, Phys. Rev. A 56, 4595 (1997)

    Article  ADS  Google Scholar 

  74. A.M. Lee, N.C. Handy, Phys. Rev. A 59, 209 (1999)

    Article  ADS  Google Scholar 

  75. K. Higuchi, M. Higuchi, Phys. Rev. B 74, 195122 (2006)

    Article  ADS  Google Scholar 

  76. M. Higuchi, K. Higuchi, Phys. Rev. B 75, 195114 (2007)

    Article  ADS  Google Scholar 

  77. J. Tao, J.P. Perdew, Phys. Rev. Lett. 95, 196403 (2005)

    Article  ADS  Google Scholar 

  78. S.K. Ghosh, B.M. Deb, J. Phys. B At. Mol. Opt. Phys. 27, 381 (1994)

    Article  ADS  Google Scholar 

  79. S.X. Hu, W.X. Qu, Z.Z. Xu, J. Phys. B At. Mol. Opt. Phys. 31, 1523 (1998)

    Article  ADS  Google Scholar 

  80. J.L. Krause, K.J. Schafer, K.C. Kulander, Phys. Rev. A 45, 4998 (1992)

    Article  ADS  Google Scholar 

  81. P. Schmelcher, M.V. Ivanov, W. Becken, Phys. Rev. A 59, 3424 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vikas Quantum fluid dynamics based current-density functional study of a helium atom in a strong time-dependent magnetic field. Eur. Phys. J. D 61, 551–561 (2011). https://doi.org/10.1140/epjd/e2010-10390-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-10390-9

Keywords

Navigation