Skip to main content
Log in

A new algorithm for the evaluation of equilibrium inter nuclear bond distance of heteronuclear diatomic molecules based on the hardness equalization principle

  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

In this report, we have derived a formula for evaluating the equilibrium inter nuclear bond distances of heteronuclear diatomics relying upon the concept of hardness equalization principle. We have relied upon the fact that the hardness, like the electronegativity, is a qualitative property and since there is much commonality in the basic philosophy of the origin and the operational significance of these two fundamental descriptors – the electronegativity and the hardness, there should be a physical process of hardness equalization similar to the electronegativity equalization. Starting from the radial dependent formula of computing hardness of atoms suggested by us and relying upon the hypothesis of hardness equalization principle, we have derived an algorithm for computing the equilibrium inter nuclear bond distance of hetero nuclear diatomics as R AB(Å) C(14.4/\(\eta_{\rm AB}\)), where \(\eta_{\rm AB}\)(eV) is the molecular hardness, C is the constant depends on the fundamental nature of hardness e.g. the bond type, steric factor etc. The optimized value of C is 0.95. We have invoked the algorithm stated above to compute the equilibrium inter nuclear bond lengths of as many as four different sets of compounds with widely divergent chemico-physical properties. In order to explore the efficaciousness of the formula derived in the present work, we have performed a validity test by comparing the theoretically evaluated bond distances vis-à-vis their corresponding spectroscopic counterparts. The comparative study reveals the surprising results that in majority of cases, the theoretical bond distances just superimpose upon the experimental bond distances. Thus, it is transparent that the hardness equalization principle is justifiably a physical process during the formation of molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.S. Mulliken, J. Am. Chem. Soc. 74, 811 (1952)

    Article  Google Scholar 

  2. R.G. Pearson, J. Am. Chem. Soc. 85, 3533 (1963)

    Article  Google Scholar 

  3. R.G. Pearson, Science 151, 172 (1966)

    Article  ADS  Google Scholar 

  4. G. Klopman, J. Am. Chem. Soc. 86, 1463 (1964)

    Article  Google Scholar 

  5. G. Klopman, J. Am. Chem. Soc. 90, 223 (1968)

    Article  Google Scholar 

  6. P. Hohenberg, H. Kohn, Phys. Rev. 136, 864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  7. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, 1989)

  8. E.P. Gyftpoulous, G.N. Hatsopoulos, Proc. Natl. Acad. Sci. 60, 786 (1968)

    Article  ADS  Google Scholar 

  9. R.P. Iczkowski, J.L. Margrave, J. Am. Chem. Soc. 83, 3547 (1961)

    Article  Google Scholar 

  10. R.G. Parr, R.A. Donnelly, M. Levy, W.E. Palke, J. Chem. Phys. 68, 3801 (1978)

    Article  ADS  Google Scholar 

  11. R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983)

    Article  Google Scholar 

  12. K.D. Sen, S.C. Vinayagam, Chem. Phys. Lett. 144, 178 (1988)

    Article  ADS  Google Scholar 

  13. R.G. Pearson, Proc. Natl. Acad. Sci. 83, 8440 (1986)

    Article  ADS  Google Scholar 

  14. J.L. Reed, J. Phys. Chem. A 101, 7396 (1997)

    Article  Google Scholar 

  15. J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz Jr., Phys. Rev. Lett. 49, 1691 (1982)

    Article  ADS  Google Scholar 

  16. W.T. Yang, Y.K. Zhang, P.W. Ayers, Phys. Rev. Lett. 84, 5172 (2000)

    Article  ADS  Google Scholar 

  17. P. Geerlings, F.D. Proft, W. Langenaeker, Chem. Rev. 103, 1793 (2003)

    Article  Google Scholar 

  18. R.G. Pearson, J. Chem. Educ. 64, 561 (1987)

    Article  Google Scholar 

  19. R.G. Pearson, Acc. Chem. Res. 26, 250 (1993)

    Article  Google Scholar 

  20. M. Torrent-Sucarrat, J.M. Luis, M. Duran, M. Sola, J. Chem. Phys. 117, 10561 (2002)

    Article  ADS  Google Scholar 

  21. M. Torrent-Sucarrat, J.M. Luis, M. Duran, M. Sola, J. Am. Chem. Soc. 123, 7951 (2001)

    Article  Google Scholar 

  22. P.K. Chattaraj, S. Sengupta, J. Phys. Chem. 100, 16126 (1996)

    Article  Google Scholar 

  23. Z. Zhou, R.G. Parr, J. Am. Chem. Soc. 113, 5720 (1991)

    Article  Google Scholar 

  24. R.G. Parr, P.K. Chattaraj, J. Am. Chem. Soc. 113, 1854 (1991)

    Article  Google Scholar 

  25. P.K. Chattaraj, S. Nath, A.B. Sannigrahi, J. Phys. Chem. 98, 9143 (1991)

    Article  Google Scholar 

  26. R.G. Pearson, W.E. Palke, J. Phys. Chem. 96, 3283 (1992)

    Article  Google Scholar 

  27. S. Pal, N. Vaval, R. Roy, J. Phys. Chem. 97, 4404 (1993)

    Article  Google Scholar 

  28. P.K. Chattaraj, G.H. Liu, R.G. Parr, Chem. Phys. Lett. 237, 171 (1995)

    Article  ADS  Google Scholar 

  29. P.W. Ayers, R.G. Parr, J. Am. Chem. Soc. 122, 2010 (2000)

    Article  Google Scholar 

  30. D.C. Ghosh, J. Jana, R. Biswas, Int. J. Quantum Chem. 80, 1 (2000)

    Article  Google Scholar 

  31. D.C. Ghosh, J. Jana, S. Bhattacharyya, Int. J. Quantum Chem. 87, 111 (2002)

    Article  Google Scholar 

  32. P.K. Chattaraj, H. Lee, R.G. Parr, J. Am. Chem. Soc. 113, 1855 (1991)

    Article  Google Scholar 

  33. P.K. Chattaraj, P.W. Ayers, J. Melin, Phys. Chem. Chem. Phys. 9, 3853 (2007)

    Article  Google Scholar 

  34. P.K. Chattaraj, P.W. Ayers, J. Chem. Phys. 123, 086101 (2005)

    Article  ADS  Google Scholar 

  35. P.W. Ayers, J. Chem. Phys. 122, 141102 (2005)

    Article  ADS  Google Scholar 

  36. P.W. Ayers, R.G. Parr, R.G. Pearson, J. Chem. Phys. 124, 194107 (2006)

    Article  ADS  Google Scholar 

  37. D.C. Ghosh, N. Islam, Int. J. Quantum Chem. DOI 10.1002/qua.22415 (2010)

  38. W. Yang, C. Lee, S.K. Ghosh, J. Phys. Chem. 85, 5412 (1985)

    Article  Google Scholar 

  39. R.F. Nalewajski, J. Phys. Chem. 89, 2831 (1985)

    Article  Google Scholar 

  40. D. Dutta, J. Phys. Chem. 90, 4211 (1986)

    Article  Google Scholar 

  41. P.W. Ayers, Faraday Discuss. 135, 161 (2007)

    Article  ADS  Google Scholar 

  42. M.V. Putz, Absolute and Chemical Electronegativity and Hardness (Nova Science Publishers, Inc., New York, 2008)

  43. R.T. Sanderson, Science 114, 670 (1951)

    Article  ADS  Google Scholar 

  44. M. Berkowitz, S.K. Ghosh, R.G. Parr, J. Am. Chem. Soc. 107, 6811 (1985)

    Article  Google Scholar 

  45. S.K. Ghosh, M. Berkowitz, R.G. Parr, Proc. Natl. Acad. Sci. 81, 8028 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  46. S. Hati, D. Datta, J. Comput. Chem. 13, 912 (1992)

    Article  Google Scholar 

  47. D.C. Ghosh, N. Islam, Int. J. Quantum Chem. (2010), DOI 10.1002/qua.22508

  48. D.C. Ghosh, N. Islam, Int. J. Quantum Chem. (2010), DOI 10.1002/qua.22499

  49. P.W. Ayers, R.G. Parr, J. Chem. Phys. 128, 184108 (2008)

    Article  ADS  Google Scholar 

  50. P.W. Ayers, R.G. Parr, J. Chem. Phys. 129, 054111 (2008)

    Article  ADS  Google Scholar 

  51. R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lecture on Physics (Addison-Wesley: Mass., 1964), Vol. II

  52. D.C. Ghosh, R. Biswas, Int. J. Mol. Sci. 3, 87 (2002)

    Article  Google Scholar 

  53. D.C. Ghosh, N. Islam, Int. J. Quantum Chem. 110, 1206 (2009)

    Google Scholar 

  54. T.K. Ghanty, S.K. Ghosh, J. Phys. Chem. 100, 12295 (1996)

    Article  Google Scholar 

  55. T.K. Ghanty, S.K. Ghosh, J. Phys. Chem. 97, 4951 (1993)

    Article  Google Scholar 

  56. F.J. Lovas, E. Tiemann, J. Phys. Chem. Ref. Data 3, 609 (1974)

    Article  Google Scholar 

  57. P. Pyykkö, M. Atsumi, Chem. Eur. J. 15, 186 (2009)

    Article  Google Scholar 

  58. Hyperchem, 8.0.6 (Hypercube Inc, 2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, N., Ghosh, D. A new algorithm for the evaluation of equilibrium inter nuclear bond distance of heteronuclear diatomic molecules based on the hardness equalization principle. Eur. Phys. J. D 61, 341–348 (2011). https://doi.org/10.1140/epjd/e2010-10058-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-10058-6

Keywords

Navigation