Skip to main content
Log in

Efficient long-distance quantum communication using microtoroidal resonators

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Based on the interaction between a three-level system and a microtoroidal resonator, we present a scheme for long-distance quantum communication in which entanglement generation with near 0.5 success probability and swaps can be implemented by accurate state detection via measuring about 100 photons. With this scheme the average time of successful entanglement distribution over 2500 km with high fidelity can be decreased to only about 30 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Zoller et al., Eur. Phys. J. D 36, 203 (2005)

    Article  ADS  Google Scholar 

  2. V. Giovannetti et al., Science 306, 1330 (2004)

    Article  ADS  Google Scholar 

  3. J.I. Cirac et al., Phys. Rev. Lett. 78, 3221 (1997)

    Article  ADS  Google Scholar 

  4. L.-M. Duan et al., Phys. Rev. Lett. 92, 127902 (2004)

    Article  ADS  Google Scholar 

  5. H.-J. Briegel et al., Phys. Rev. Lett. 81, 5932 (1998)

    Article  ADS  Google Scholar 

  6. A. Ekert, Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. C.H. Bennett et al., Phys. Rev. Lett. 73, 3081 (1993)

    Google Scholar 

  8. M. Zukowski et al., Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  9. L. Childress et al., Phys. Rev. A 72, 052330 (2005)

    Article  ADS  Google Scholar 

  10. L. Childress et al., Phys. Rev. Lett. 96, 070504 (2006)

    Article  ADS  Google Scholar 

  11. J.I. Cirac et al., Phys. Rev. Lett. 78, 3221 (1997)

    Article  ADS  Google Scholar 

  12. W. Yao et al., Phys. Rev. Lett. 95, 030504 (2005)

    Article  ADS  Google Scholar 

  13. E. Waks et al., Phys. Rev. Lett. 96, 153601 (2006)

    Article  ADS  Google Scholar 

  14. C.H. Bennett et al., Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  15. D. Deutsch et al., Phys. Rev. Lett. 77, 2818 (1996)

    Article  ADS  Google Scholar 

  16. W. Dür et al., Phys. Rev. A 59, 169 (1999)

    Article  ADS  Google Scholar 

  17. L.-M. Duan et al., Nature 414, 413 (2001)

    Article  ADS  Google Scholar 

  18. C.W. Chou et al., Nature 438, 828 (2005)

    Article  ADS  Google Scholar 

  19. C.-W. Chou et al., Science 316, 1316 (2007)

    Article  ADS  Google Scholar 

  20. K.S. Choi et al., Nature 452, 67 (2008)

    Article  ADS  Google Scholar 

  21. N. Sangouard et al., Phys. Rev. A 76, 050301 (2007)

    Article  ADS  Google Scholar 

  22. C. Simon et al., Phys. Rev. Lett. 98, 190503 (2007)

    Article  ADS  Google Scholar 

  23. B. Zhao et al., Phys. Rev. Lett. 98, 240502 (2007)

    Article  ADS  Google Scholar 

  24. P. van Loock et al., Phys. Rev. Lett. 96, 240501 (2006)

    Article  ADS  Google Scholar 

  25. T.D. Ladd et al., New J. Phys. 8, 184 (2006)

    Article  ADS  Google Scholar 

  26. W.J. Munro et al., Phys. Rev. Lett. 101, 040502 (2008)

    Article  ADS  Google Scholar 

  27. C. Cabrillo et al., Phys. Rev. A 59, 1025 (1999)

    Article  ADS  Google Scholar 

  28. T. Aoki et al., Nature 443, 671 (2006)

    Article  ADS  Google Scholar 

  29. B. Dayan et al., Science 319, 1062 (2008)

    Article  ADS  Google Scholar 

  30. S.M. Spillane et al., Phys. Rev. Lett. 91, 043902 (2003)

    Article  ADS  Google Scholar 

  31. B.E. Kane, Nature 393, 133 (1998)

    Article  ADS  Google Scholar 

  32. T. Schaetz et al., Phys. Rev. Lett. 94, 010501 (2005)

    Article  ADS  Google Scholar 

  33. T.P. Spiller, K. Nemoto, S.L. Braunstein, W.J. Munro, P. van Loock, G.J. Milburn, New J. Phys. 8, 30 (2006)

    Article  ADS  Google Scholar 

  34. F.-Y. Hong, S.-J. Xiong, J. Mod. Opt. 55, 2731 (2008)

    Article  ADS  MATH  Google Scholar 

  35. F.-Y. Hong, S.-J. Xiong, Eur. Phys. J. D 54, 131 (2009)

    Article  ADS  Google Scholar 

  36. L. Praxmeyer, P. van Loock, Phys. Rev. A 81, 060303(R) (2010)

    Article  MathSciNet  ADS  Google Scholar 

  37. M.A. Rowe et al., Nature 409, 791 (2001)

    Article  Google Scholar 

  38. J.F. Clauser et al., Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  39. F. Jelezko et al., Phys. Rev. Lett. 93, 130501 (2004)

    Article  ADS  Google Scholar 

  40. K.W. Holman et al., Opt. Lett. 30, 1225 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Y. Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, F.Y., Xiong, S.J. & Tang, W.H. Efficient long-distance quantum communication using microtoroidal resonators. Eur. Phys. J. D 62, 261–264 (2011). https://doi.org/10.1140/epjd/e2010-09286-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-09286-1

Keywords

Navigation