Skip to main content
Log in

Time-course of aberrations and their distribution: impact of LET and track structure

  • Topical issue on Molecular level assessments of radiation biodamage
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The biological response to high linear energy transfer (LET) radiation differs considerably from that to low LET radiation and this has been attributed to differences in the spatial energy deposition of both radiation qualities. In the case of X-rays the energy is deposited uniformly within the cell nucleus and produces damages in a purely stochastic manner. In contrast, for particles the energy is deposited inhomogeneously along the ion trajectory and the local dose decays with the square radial distance from the center of the track. This nonuniformity affects the yield and the distribution of aberrations among cells. Moreover, after high LET exposure a relationship between the aberration yield and cell cycle delay was observed. In this study, we present a detailed analysis of the distribution of aberrations in human lymphocytes reaching mitosis at early and later times after low and high LET exposure. Aberration data were fit to stochastic distributions demonstrating that the delay is related to the number of particle traversals per cell nucleus. To further elucidate this relationship, we introduce a Monte Carlo phenomenological model which incorporates the number of particle hits per nucleus. This value was derived by fitting theoretical distributions to the experimental data. Additionally, the probability that a cell traversed by a particle reaches mitosis at a given time was calculated. The analysis of biological data and numerical simulations clearly show the impact of the track structure on the formation of chromosome aberrations and their distribution among cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IAEA, Cytogenetic analysis for radiation dose assessment (International Atomic Energy Agency, Vienna, 2001)

  2. R. Mateuca, N. Lombaert, P. Aka, I. Decordier, M. Kirsch-Volders, Biochimie 88, 1515 (2006)

    Article  Google Scholar 

  3. S. Bonassi, H. Norppa, M. Ceppi, U. Strmberg, R. Vermeulen, A. Znaor, A. Cebulska-Wasilewska, E. Fabianova, A. Fucic, S. Gundy et al., Carcinogenesis 29, 1178 (2008)

    Article  Google Scholar 

  4. E. Fokas, G. Kraft, H. An, R. Engenhart-Cabillic, Biochem. Biophys. Acta 1796, 216 (2009)

    Google Scholar 

  5. M. Durante, F. Cucinotta, Nat. Rev. Cancer 8, 465 (2008)

    Article  Google Scholar 

  6. M. Scholz, Adv. Polym. Sci. 162, 95 (2003)

    Article  Google Scholar 

  7. G. Kraft, Strahlenther. Onkol. 175, 44 (1999)

    Article  Google Scholar 

  8. R. Lee, E. Nasonova, S. Ritter, Adv. Space Res. 35, 268 (2005)

    Article  ADS  Google Scholar 

  9. S. Ritter, E. Nasonova, E. Gudowska-Nowak, Int. J. Radiat. Biol. 78, 191 (2002)

    Article  Google Scholar 

  10. S. Ritter, E. Nasonova, M. Scholz, W. Kraft-Weyrather, G. Kraft, Int. J. Radiat. Biol. 69, 155 (1996)

    Article  Google Scholar 

  11. A. Ochab-Marcinek, E. Gudowska-Nowak, E. Nasonova, S. Ritter, Radiat. Environ. Biophys. 48, 361 (2009)

    Article  Google Scholar 

  12. B. Jakob, J. Splinter, M. Durante, G. Taucher-Scholz, Proc. Natl. Acad. Sci. USA 106, 3172 (2009)

    Article  ADS  Google Scholar 

  13. S. Brons, G. Taucher-Scholz, M. Scholz, G. Kraft, Radiat. Environ. Biophys. 42, 63 (2003)

    Article  Google Scholar 

  14. M. Durante, Radiat.Res. 164, 467 (2005)

    Article  Google Scholar 

  15. R. Lee, S. Sommer, C. Hartel, E. Nasanova, M. Durante, S. Ritter, Mutat. Res. (submitted)

  16. M. Durante, Y. Furusawa, E. Gotoh, Int. J. Radiat. Biol. 74, 457 (1998)

    Article  Google Scholar 

  17. R. Anderson, S. Marsden, E. Wright, M. Kadhim, D. Goodhead, C. Griffin, Int. J. Radiat. Biol. 76, 31 (2000)

    Article  Google Scholar 

  18. P. Chen, R. Sachs, J. Theor. Biol. 166, 117 (1994)

    Article  Google Scholar 

  19. S. Karlin, H. Taylor, A first course in stochastic processes (Academic Press, London, 1975)

  20. E. Gudowska-Nowak, R. Lee, E. Nasonova, S. Ritter, M. Scholz, Adv. Space Res. 39, 1070 (2007)

    Article  ADS  Google Scholar 

  21. E. Gudowska-Nowak, A. Kleczkowski, E. Nasonova, M. Scholz, S. Ritter, Int. J. Radiat. Biol. 81, 23 (2005)

    Article  Google Scholar 

  22. S. Tenhumberg, E. Gudowska-Nowak, E. Nasonova, S. Ritter, Int. J. Radiat. Biol. 83, 501 (2007)

    Article  Google Scholar 

  23. R. Lee, Chromosome aberrations in human lymphocytes irradiated with heavy ions, Ph.D. thesis, Darmstadt, 2006

  24. M. Scholz, S. Ritter, G. Kraft, Int. J. Radiat. Biol. 74, 325 (1998)

    Article  Google Scholar 

  25. M. Scholz, A. Kellerer, W. Kraft-Weyrather, G. Kraft, Radiat. Environ. Biophys. 36, 59 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Gudowska-Nowak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deperas-Standylo, J., Lee, R., Ayriyan, A. et al. Time-course of aberrations and their distribution: impact of LET and track structure. Eur. Phys. J. D 60, 93–99 (2010). https://doi.org/10.1140/epjd/e2010-00155-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00155-y

Keywords

Navigation