Skip to main content
Log in

Band structures of a slowly rotating dipolar Bose-Einstein condensate with a quantized vortex along a one-dimensional optical lattice

  • Cold Matter and Quantum Gases
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We derive the effective Gross-Pitaevskii equation for a slowly rotating dipolar Bose-Einstein condensate (BEC) with a quantized vortex along a one-dimensional optical lattice and calculate its band structures. The band structure of a slowly rotating BEC in a lattice becomes interesting when dipole-dipole interaction (DDI) is involved. Under rotation, a dipolar rotating term emerges from the DDI potential. The dipolar rotating term makes a BEC with an attractive DDI more stable than one with a repulsive DDI. The dipolar rotating term changes and generalizes the definition for the type of BEC, which cannot be simply determined by an s-wave scattering length or an effective contact interaction term. The dipolar rotating term also makes the band structure fascinating and tunable. A so-called swallowtail band structure, i.e., a multi-valued solution due to nonlinear interaction, can either elongate or shrink as the band index increases, in contrast to a non-rotating dipolar BEC system with a monotonic dependence. With the dipolar rotating term, various band structures as well as an attractive BEC without collapse can be easily achieved. We demonstrate that a rotating dipolar BEC system subject to an optical lattice combines features of a crystal and a superfluid and promises wide applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.J. Donnelly, Quantized vortices in helium II (Cambridge university press, New York, 1991)

    Google Scholar 

  2. R. Bhat, M. Krämer, J. Cooper, M.J. Holland, Phys. Rev. A 76, 043601 (2007)

    Article  ADS  Google Scholar 

  3. A.G. Morris, D.L. Feder, Phys. Rev. A 74, 033605 (2006)

    Article  ADS  Google Scholar 

  4. G. Watanabe, G. Baym, C.J. Pethick, Phys. Rev. Lett. 93, 190401 (2004)

    Article  ADS  Google Scholar 

  5. N. Regnault, Th. Jolicoeur, Phys. Rev. Lett. 91, 030402 (2003)

    Article  ADS  Google Scholar 

  6. S. Viefers, J. Phys. Cond. Mat. 20, 123202 (2008)

    Article  ADS  Google Scholar 

  7. H.L. Stormer, D.C. Tsui, A.C. Gossard, Rev. Mod. Phys. 71, S298 (1999)

    Article  Google Scholar 

  8. W.F. Vinen, J.J. Niemela, J. Low Temp. Phys. 128, 167 (2002)

    Article  Google Scholar 

  9. W.F. Vinen, J. Low Temp. Phys. 145, 7 (2006)

    Article  ADS  Google Scholar 

  10. V.S. L’vov, S.V. Nazarenko, O. Rudenko, Phys. Rev. B 76, 024520 (2007)

    Article  ADS  Google Scholar 

  11. E. Kozik, B. Svistunov, Phys. Rev. Lett. 94, 025301 (2005)

    Article  ADS  Google Scholar 

  12. M. Kobayashi, M. Tsubota, Phys. Rev. A 76, 045603 (2007)

    Article  ADS  Google Scholar 

  13. M. Kobayashi, M. Tsubota, Phys. Rev. Lett. 94, 065302 (2005)

    Article  ADS  Google Scholar 

  14. T.L. Horng, C.H. Hsueh, S.C. Gou, Phys. Rev. A 77, 063625 (2008)

    Article  ADS  Google Scholar 

  15. S. Tsuchiya, S. Kurihara, T. Kimura, Phys. Rev. A 70, 043628 (2004)

    Article  ADS  Google Scholar 

  16. Q. Gu, K. Bongs, K. Sengstock, Phys. Rev. A 70, 063609 (2004)

    Article  ADS  Google Scholar 

  17. R. Barnett, A. Turner, E. Demler, Phys. Rev. Lett. 97, 180412 (2006)

    Article  ADS  Google Scholar 

  18. J. Liu, L. Fu, B.Y. Ou, S.G. Chen, D.I Choi, B. Wu, Q. Niu, Phys. Rev. A 66, 023404 (2002)

    Article  ADS  Google Scholar 

  19. B. Wu, Q. Niu, Phys. Rev. A 61, 023402 (2000)

    Article  ADS  Google Scholar 

  20. A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, T. Pfau, Phys. Rev. Lett. 94, 160401 (2005)

    Article  ADS  Google Scholar 

  21. C. Mora, O. Parcollet, X. Waintal, Phys. Rev. B 76, 064511 (2007)

    Article  ADS  Google Scholar 

  22. L. Mathey, I. Danshita, C.W. Clark, Phys. Rev. A 79, 011602(R) (2009)

    ADS  Google Scholar 

  23. N.R. Cooper, E.H. Rezayi, S.H. Simon, Phys. Rev. Lett. 95, 200402 (2005)

    Article  ADS  Google Scholar 

  24. Y.Y. Lin, R.K. Lee, Y.M. Kao, T.F. Jiang, Phys. Rev. A 78, 023629 (2008)

    Article  ADS  Google Scholar 

  25. G.E. Astrakharchik, Y.E. Lozovik, Phys. Rev. A 77, 013404 (2008)

    Article  ADS  Google Scholar 

  26. R.M. Wilson, S. Ronen, J.L. Bohn, Phys. Rev. A 79, 013621 (2009)

    Article  ADS  Google Scholar 

  27. P. Öhberg, L. Santos, Phys. Rev. Lett. 89, 240402 (2002)

    Article  Google Scholar 

  28. M. Machholm, C.J. Pethick, H. Smith, Phys. Rev. A 67, 053613 (2003)

    Article  ADS  Google Scholar 

  29. D. Diakonov, L.M. Jensen, C.J. Pethick, H. Smith, Phys. Rev. A 66, 013604 (2002)

    Article  ADS  Google Scholar 

  30. B.T. Seaman, L.D. Carr, M.J. Holland, Phys. Rev. A 71, 033622 (2005)

    Article  ADS  Google Scholar 

  31. B. Eiermann, T. Anker, M. Albiez, M. Taglieber, P. Treutlein, K.-P. Marzlin, M.K. Oberthaler, Phys. Rev. Lett. 92, 230401 (2004)

    Article  ADS  Google Scholar 

  32. E.A. Ostrovskaya, Y.S. Kivshar, Phys. Rev. Lett. 90, 160407 (2003)

    Article  ADS  Google Scholar 

  33. M.A. Baranov, Phys. Rep. 464, 71 (2008)

    Article  ADS  Google Scholar 

  34. T.F. Jiang, W.C. Su, Phys. Rev. A 74, 063602 (2006)

    Article  ADS  Google Scholar 

  35. A.L. Fetter, A.A. Svidzinsky, J. Phys. Cond. Mat. 13, R135 (2001)

    Article  ADS  Google Scholar 

  36. K. Góral, K. Rzazewski, T. Pfau, Phys. Rev. A 61, 051601 (2000)

    Article  ADS  Google Scholar 

  37. C. Kittel, Introduction to solid state physics, 8th edn. (John Wiley & Son, New York, 2005)

    Google Scholar 

  38. Stuhler, A. Griesmaier, T. Koch, M. Fattori, T. Pfau, S. Giovanazzi, P. Pedri, L. Santos, Phys. Rev. Lett. 95, 150406 (2005)

    Article  ADS  Google Scholar 

  39. The memory effect mentioned here differs from the non-Markovian process also called the memory effect of quantum kinetics; see H.C. Lee, Phys. Stat. Sol. 245, 707 (2008) and references [40,41]

    Article  ADS  Google Scholar 

  40. I. Knezevic, D.K. Ferry, Phys. Rev. E 67, 066122 (2003)

    Article  ADS  Google Scholar 

  41. H.C. Lee, C.Y. Mou, Eur. Phys. J. B 73, 229 (2010)

    Article  ADS  Google Scholar 

  42. E.J. Mueller, Phys. Rev. A 66, 063603 (2002)

    Article  ADS  Google Scholar 

  43. B.G. Streetman, S. Banerjee, Solid State Electronic Devices, 6th edn. (Prentice Hall, London, 2006), Chap. 10

    Google Scholar 

  44. M. Klawunn, R. Nath, P. Pedri, L. Santos, Phys. Rev. Lett. 100, 240403 (2008)

    Article  ADS  Google Scholar 

  45. see p. 267 of reference [37]

  46. O. Morsch, M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006)

    Article  ADS  Google Scholar 

  47. K. Iigaya, S. Konabe, I. Danshita, T. Nikuni, Phys. Rev. A 74, 053611 (2006)

    Article  ADS  Google Scholar 

  48. S. Giorgini, Phys. Rev. A 57, 2949 (1998)

    Article  ADS  Google Scholar 

  49. B. Wu, Q. Niu, Phys. Rev. A 64, 061603 (2001)

    Article  ADS  Google Scholar 

  50. In GaAs/AlGaAs quantum wells, the intersubband relaxation time is in the picosecond scale quoted from K.W. Sun, C.L. Huang, G.B. Huang, H.C. Lee, Solid State Commun. 126, 519 (2003) and reference [51]

    Article  ADS  Google Scholar 

  51. H.C. Lee, K.W. Sun, Microelectr. J. 34, 671 (2003) 39a

    Article  Google Scholar 

  52. Y.S. Kivshar, B.L. Davies, Phys. Rep. 298, 81 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. C. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H., Jiang, T. Band structures of a slowly rotating dipolar Bose-Einstein condensate with a quantized vortex along a one-dimensional optical lattice. Eur. Phys. J. D 58, 311–325 (2010). https://doi.org/10.1140/epjd/e2010-00109-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00109-5

Keywords

Navigation