Skip to main content
Log in

The role of metal cation in electron-induced dissociation of tryptophan

The European Physical Journal D Aims and scope Submit manuscript

Abstract

The fragmentation of tryptophan (Trp) – metal complexes [Trp+M]+, where M = Cs, K, Na, Li and Ag, induced by 22 eV energy electrons was compared to [Trp+H]+. Additional insights were obtained through the study of collision-induced dissociation (CID) of [Trp+M]+ and through deuterium labelling. The electron-induced dissociation (EID) of [Trp+M]+ resulted in the formation of radical cations via the following pathways: (i) loss of M to form Trp+•, (ii) loss of an H atom to form [(Trp-H)+M]+•, and (iii) bond homolysis to form C2H4NO2M+•. Deuterium labelling suggests that H atom loss can occur from heteroatom and/or C–H positions. Other types of fragment ions observed include: C9H7NM+, C9H8N+, M+, C2H3NO2M+, CO2M+, C10H11N2M+, C10H9NOM+. Formation of C2H4NO2M+• and C9H7NM+ cations suggests that the metal interacts with both the backbone and aromatic side chain, thus implicating π-interactions for all M. CID of [Trp+M]+ resulted in: loss of metal cation (for M = Cs and K); successive loss of NH3 and CO as the dominant channel for M = Na, Li and Ag; formation of C2H3NO2M+. Preliminary DFT calculations were carried out on [Trp+Na]+ and [(Trp-H)+Na]+• which reveal that: the most stable conformation involves chelation by the backbone together with a \(\pi \)-interaction with the indole side chain; loss of H atom from \(\alpha \)-CH of the side chain is thermodynamically favoured over losses from other positions, with the resultant radical cation maintaining a (N, O, ring) chelated structure which is stabilized by conjugation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. von Sonntag, The chemical basis of radiation biology (Taylor and Francis, London, 1987)

  2. C. von Sonntag, in Physical and Chemical Mechanisms in Molecular Radiation Biology (Plenum Press, New York, 1991)

  3. U. Uehara, H. Nikjoo, D.T. Goodhead, Radiat. Res. 152, 202 (1999)

    Article  Google Scholar 

  4. J.A. LaVerne, S.M. Pimblott, J. Phys. Chem. 99, 10540 (1995)

    Article  Google Scholar 

  5. E. Scifoni, E. Surdutovich, A. Solov’yov, I. Pshenichnov, I. Mishustin, W. Greiner, in Proceedings of the 5th International Conference on Radiation Damage in Biomolecular Systems (RADAM), edited by K. Tökési, B. Sulik (American Institute of Physics, 2008), p. 104

  6. E. Surdutovich, O.I. Obolensky, E. Scifoni, I. Pshenichnov, I. Mishustin, A.V. Solov’yov, W. Greiner, Eur. Phys. J. D 51, 63 (2009)

    Article  ADS  Google Scholar 

  7. B. Boudaiffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000)

    Article  ADS  Google Scholar 

  8. L. Sanche, Eur. Phys. J. D 35, 367 (2005)

    Article  ADS  Google Scholar 

  9. S. Denifl, F. Zappa, I. Mahr, J. Lecointre, M. Probst, T. D. Märk, P. Scheier, Phys. Rev. Lett. 97, 043201 (2006)

    Article  ADS  Google Scholar 

  10. P. Sulzer, S. Ptasinska, F. Zappa, B. Mielewska, A.R. Milosavljevic, P. Scheier, T.D. Märk, I. Bald, S. Gohlke, M.A. Huels, E. Illenberger, J. Chem. Phys. 125, 044304 (2006)

    Article  ADS  Google Scholar 

  11. I. Ipolyi, P. Cicman, S. Denifl, V. Matejcik, P. Mach, J. Urban, P. Scheier, T.D. Märk, S. Matejcik, Int. J. Mass Spectrom. 252, 228 (2006)

    Article  ADS  Google Scholar 

  12. S. Ptasinska, S. Denifl, S. Gohlke, P. Scheier, E. Illenberger, T.D. Märk, Angew. Chem. Int. Ed. 45, 1893 (2006)

    Article  Google Scholar 

  13. R.A. Freitas Jr., Nanomedicine, Vol. I: Basic Capabilities (Landes Bioscience, Georgetown, 1999)

  14. S.V. Jovanovic, M.G. Simic, Life Chem. Rep. 3, 124 (1985)

    Google Scholar 

  15. P. Gaikwad, K.I. Priyadarsini, B.S.M. Rao, Radiat. Phys. Chem. 77, 1124 (2008)

    Article  ADS  Google Scholar 

  16. J.P. Gallivan, D.A. Dougherty, Proc. Natl. Acad. Sci. USA 96, 9459 (1999)

    Article  ADS  Google Scholar 

  17. D.A. Dougherty, D.A. Stauffer, Science 250, 1558 (1990)

    Article  ADS  Google Scholar 

  18. R.A. Kumpf, D.A. Dougherty, Science 261, 1708 (1993)

    Article  ADS  Google Scholar 

  19. C. Miller, Science 261, 1692 (1993)

    Article  ADS  Google Scholar 

  20. W.G. Zhong, J.P. Gallivan, Y.N. Zhang, L.T. Li, H.A. Lester, D.A. Dougherty, Proc. Natl. Acad. Sci. U.S.A. 95, 12088 (1998)

    Article  ADS  Google Scholar 

  21. B. Roux, M. Karplus, J. Am. Chem. Soc. 115, 3250 (1993)

    Article  Google Scholar 

  22. D.A. Doyle, J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, R. MacKinnon, Science 280, 69 (1998)

    Article  ADS  Google Scholar 

  23. T. Yamaguchi, T. Ito, T. Sato, T. Shinbo, S. Nakao, J. Am. Chem. Soc. 121, 4078 (1999)

    Article  Google Scholar 

  24. A. Schiefner, J. Breed, L. Bosser, S. Kneip, J. Gade, G. Holtmann, K. Diederichs, W. Welte, E. Bremer, J. Biol. Chem. 279, 5588 (2004)

    Article  Google Scholar 

  25. C. Kroner, T. Guan, L. Gerace, G. Cingolani, J. Biol. Chem. 278, 16216 (2003)

    Article  Google Scholar 

  26. S. Sato, Z. He, M. Kaneda, M. Imai, H. Tsuchida, Nucl. Instrum. Meth. B 256, 506 (2007)

    Article  ADS  Google Scholar 

  27. O. Plekan, V. Feyer, R. Richter, M. Coreno, K.C. Prince, Molec. Phys. 106, 1143 (2008)

    Article  ADS  Google Scholar 

  28. H. Abdoul-Carime, L. Sanche, Radiat. Res. 160, 86 (2003)

    Article  Google Scholar 

  29. H. Abdoul-Carime, S. Gohlke, E. Illenberger, Chem. Phys. Lett. 402, 497 (2005)

    Article  ADS  Google Scholar 

  30. H. Lioe, R.A.J. O’Hair, G.E. Reid, J. Am. Soc. Mass Spectrom. 15, 65 (2004)

    Article  Google Scholar 

  31. H. Lioe, R.A.J. O’Hair, G. Reid, Rapid. Commun. Mass Spectrom. 18, 978 (2004)

    Article  Google Scholar 

  32. H. Lioe, R.A.J. O’Hair, Anal. Bioanal. Chem. 389, 1429 (2007)

    Article  Google Scholar 

  33. H. El Aribi, G. Orlova, A.C. Hopkinson, K.W.M. Siu, J. Phys. Chem. A 108, 3844 (2004)

    Article  Google Scholar 

  34. H. Kang, C. Dedonder-Lardeux, C. Jouvet, S. Martrenchard, G. Grégoire, C. Desfrançois, J.-P. Schermann, M. Barat, J.A. Fayeton, Phys. Chem. Chem. Phys. 6, 2628 (2004)

    Article  Google Scholar 

  35. V. Lepère, B. Lucas, M. Barat, J.A. Fayeton, V.J. Picard, C. Jouvet, P. Çarçabal, I. Nielsen, C. Dedonder-Lardeux, G. Grégoire, A. Fujii, J. Chem. Phys. 127, 134313 (2007)

    Article  ADS  Google Scholar 

  36. J.M. Talley, B.A. Cerda, G. Ohanessian, C. Wesdemiotis, Chem. Eur. J. 8, 1377 (2002)

    Article  Google Scholar 

  37. M.M. Kish, G. Ohanessian, C. Wesdemiotis, Int. J. Mass Spectrom. 227, 509 (2003)

    Article  Google Scholar 

  38. R.C. Dunbar, J. Phys. Chem. A 104, 8067 (2000)

    Article  Google Scholar 

  39. M.-W. Yang, L.-T. Chen, Y.-C. Yang, Y.-P. Ho, J. Mass Spectrom. 42, 542 (2007)

    Article  Google Scholar 

  40. M. Rožman, Croat. Chim. Acta 78, 185 (2005)

    Google Scholar 

  41. C. Ruan, M.T. Rodgers, J. Am. Chem. Soc. 126, 14600 (2004)

    Article  Google Scholar 

  42. A. Gapeev, R.C. Dunbar, Int. J. Mass Spectrom 228, 825 (2003)

    Article  Google Scholar 

  43. V. Ryzhov, R.C. Dunbar, B. Cerda, C. Wesdemiotis, J. Am. Soc. Mass Spectrom. 11, 1037 (2000)

    Article  Google Scholar 

  44. N.C. Polfer, J. Oomens, R.C. Dunbar, Phys. Chem. Chem. Phys. 8, 2744 (2006)

    Article  Google Scholar 

  45. T. Shoeib, K.W.M. Siu, A.C. Hopkins, J. Phys. Chem. A 106, 6121 (2002)

    Article  Google Scholar 

  46. T. Tabarin, R. Antoine, M. Broyer, P. Dugourd, Eur. Phys. J. D 37, 237 (2006)

    Article  ADS  Google Scholar 

  47. T. Tabarin, R. Antoine, I. Compagnon, M. Broyer, P. Dugourd, R. Mitrić, J. Petersen, V. Bonačić-Koutecký, Eur. Phys. J. D 43, 275 (2007)

    Article  ADS  Google Scholar 

  48. J. Jover, R. Bosque, J. Sales, Dalton Trans. 6441 (2008)

  49. C. Ruan, Z. Yang, N. Hallowita, M.T. Rodgers, J. Phys. Chem. A 109, 11539 (2005)

    Article  Google Scholar 

  50. R.A. Zubarev, Mass Spectrom. Rev. 22, 57 (2003)

    Article  Google Scholar 

  51. L. Feketeová, G.N. Khairallah, R.A.J. O’Hair, Eur. J. Mass Spectrom. 14, 107 (2008)

    Article  Google Scholar 

  52. L. Feketeová, R.A.J. O’Hair, Rapid Commun. Mass Spectrom. 23, 3259 (2009)

    Article  Google Scholar 

  53. P.M. Mayer, C. Poon, Mass Spectrom. Rev. 28, 608 (2009)

    Article  Google Scholar 

  54. J. Laskin, J.H. Futrell, Mass Spectrom. Rev. 24, 135 (2005)

    Article  Google Scholar 

  55. R. Malek, W. Metelmann-Strupat, M. Zeller, H. Muenster, Am. Biotech. Lab. 23, 8 (2005)

    Google Scholar 

  56. S. Horning, R. Malek, A. Wieghaus, M.W. Senko, J.E.P. Syka, in Proceedings of the 51st ASMS conference mass spectrometry and allied topics (Montreal, 2003)

  57. C. Lee, W. Yang, R.G. Parr, Phys. Rev. 37, 785 (1988)

    Article  ADS  Google Scholar 

  58. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  59. M.W. Wong, Chem. Phys. Lett. 256, 391 (1996)

    Google Scholar 

  60. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, GAUSSIAN 03, Gaussian, Inc., Wallingford CT, 2004

  61. NIST Chemistry webbook:http://webbook.nist.gov/chemistry

  62. P.H. Cannington, N.S. Ham, J. Electron Spectros. Relat. Phenomena 32, 139 (1983)

    Article  Google Scholar 

  63. C.K. Barlow, D. Moran, L. Radom, W.D. McFadyen, R.A.J. O’Hair, J. Phys. Chem. A 110, 8304 (2006)

    Article  Google Scholar 

  64. E. Bagheri-Majdi, Y. Ke, G. Orlova, I.K. Chu, A.C. Hopkins, M. Siu, J. Phys. Chem. B 108, 11170 (2004)

    Article  Google Scholar 

  65. F. Rogalewicz, Y. Hoppilliard, G. Ohanessian, Int. J. Mass Spectrom. 195/196, 565 (2000)

    Google Scholar 

  66. T. Ly, S. Yin, J, A. Loo, R.R. Julian, Rapid Commun. Mass Spectrom. 23, 2099 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Feketeová or R. A.J. O’Hair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feketeová, L., Wong, M. & O’Hair, R. The role of metal cation in electron-induced dissociation of tryptophan. Eur. Phys. J. D 60, 11–20 (2010). https://doi.org/10.1140/epjd/e2010-00019-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00019-6

Keywords

Navigation