Skip to main content
Log in

Structural and electronic properties of Snn-1Pb and Pbn-1Sn clusters: a theoretical investigation through first principles calculations

  • Clusters and Nanostructures
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Here we report a systematic theoretical study of the structure and electronic properties of Snn-1Pb and Pbn-1Sn (n = 2-13) clusters and compare these results with pure Snn and Pbn to understand the influence of the dopant elements. The calculations were carried out using the density functional theory with generalized gradient approximation for the exchange-correlation potential. Extensive search based on large number of initial configurations has been carried out to locate the stable isomers of Snn-1Pb and Pbn-1Sn (n = 2-13) clusters. The relative stability of Snn-1Pb and Pbn-1Sn (n = 2-13) clusters is analyzed based on the calculated binding energies and second difference in energy. The stability analysis of these clusters suggests that, while the substitution of Sn by Pb lowers the stability of Snn clusters, presence of Sn enhances the stability of the Pbn clusters. The results suggest that while for Snn-1Pb, n=4, 7, 10, 12 clusters are more stable than their respective neighbors, Pbn-1Sn clusters with n = 4, 7 and 9 are found to be more stable. Based on the fragmentation pattern it is seen that for Snn-1Pb and Pbn-1Sn clusters favor monomer evaporation of the Pb atom up to n =11 and n =12, respectively. Unlike this trend, the Sn11Pb undergoes fission type fragment into Sn5Pb and Sn6 clusters. A comparison between our theoretical results and surface induced dissociation experiment shows good agreement, which gives confidence on the prediction of the ground state geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Kumar, K. Esfarjani, Y. Kawazoe, in Clusters and Nano-materials, Springer Series in Cluster Physics, edited by Y. Kawazoe, K. Ohno (Springer, Heidelberg, 2002), p. 9

    Google Scholar 

  2. A. Kasuya, R. Sivamohan, Y.A. Barnakov, I.M. Dmitruk, T. Nirasawa, V.R. Romanyuk, V. Kumar, S.V. Mamykin, K. Tohji, B. Jeyadevan, T. Kudo, O. Terasaki, Z. Liu, R.V. Belosludov, V. Sundararajan, Y. Kawazoe, Nature Mater. 3, 99 (2004)

    Article  ADS  Google Scholar 

  3. G. Seifert, Nature Mater. 3, 77 (2004)

    Article  ADS  Google Scholar 

  4. E. Roduner, Chem. Soc. Rev. 35, 583 (2006)

    Article  Google Scholar 

  5. M. Brack, Rev. Mod. Phys. 65, 677 (1993); W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)

    Article  ADS  Google Scholar 

  6. M.F. Jarrold, V.A. Constant, Phys. Rev. Lett. 67, 2994 (1991); M.F. Jarrold, J.E. Bower, J. Chem. Phys. 96, 9180 (1992); J.M. Hunter, J.L. Fye, M.F. Jarrold, J.E. Bower, Phys. Rev. Lett. 73, 2063 (1994); A.A. Shvartsburg, M.F. Jarrold, Phys. Rev. A 60, 1235 (1999); A.A. Shvartsburg, M.F. Jarrold, Chem. Phys. Lett. 317, 615 (2000)

    Article  ADS  Google Scholar 

  7. M. Watanabe, Y. Saito, S. Nishigaki, T. Noda, Jpn J. Appl. Phys., Part 1 27, 427 (1988); Y. Saito, T. Noda, Z. Phys. D: At. Mol. Clusters 12, 225 (1989); O. Echt, K. Sattler, E. Recknagel, Phys. Rev. Lett. 47, 1121 (1981); Y. Saito, K. Yamauchi, K. Mihama, T. Noda, Jpn J. Appl. Phys., Part 2 21, L396 (1982); K. Lai Hing, R.G. Wheeler, W.L. Wilson, M.A. Duncan, J. Chem. Phys. 87, 3401 (1987); G. Gantefor, M. Gausa, K.H. Meiwes-Broer, H.O. Lutz, Z. Phys. D: At. Mol. Clusters 12, 405 (1989); Ch. Luder, K.H. Meiwes-Broer, Chem. Phys. Lett. 294, 391 (1998); Y. Negishi, H. Kawamata, A. Nakajima, K. Kaya, J. Electron Spectrosc. Relat. Phenom. 106, 117 (2000); A. Hoareau, P. Melinon, B. Cabaud, D. Rayone, B. Tribollet, M. Broyer, Chem. Phys. Lett. 143, 602 (1988); O. Echt, P. Scheier, T.D. Märk, C.R. Phys. 3, 353 (2002); T. Döppner, S. Teuber, M. Schumacher, J. Tiggesbäumker, K.H. Meiwes-Broer, Int. J. Mass. Spectrom. 192, 387 (1999); P. Pfau, K. Sattler, R. Pflaum, E. Recknagel, Phys. Lett. A 104, 262 (1984); R.W. Farley, P. Ziemann, A.W. Castleman, Z. Phys. D: At. Mol. Clusters 14, 353 (1989)

    Google Scholar 

  8. K. Raghavachari, V. Logovinsky, Phys. Rev. Lett. 55, 2853 (1985); K. Raghavachari, J. Chem. Phys. 84, 5672 (1986); K. Raghavachari, C.M. Rohlfing, J. Chem. Phys. 89, 2219 (1988); C.M. Rohlfing, K. Raghavachari, J. Chem. Phys. 167, 559 (1990); K. Raghavachari, C.M. Rohlfing, J. Chem. Phys. 94, 3670 (1991); C.M. Rohlfing, J. Chem. Phys. 198, 521 (1992); J. Mitas, J.C. Groupossmann, I. Stich, J. Tobik, Phys. Rev. Lett. 84, 1479 (2000); S. Li, R. J. Van Zee, W. Weltner Jr, K. Raghavachari, Chem. Phys. Lett. 243, 275 (1995); C. Xu, T.R. Taylor, G.R. Burton, D.M. Neumark, J. Chem. Phys. 108, 1395 (1998); G.R. Burton, C. Xu, C.C. Arnold, D.M. Neumark, Chem. Phys. 104, 2757 (1996); X. Zhu, X.C. Zeng, J. Chem. Phys. 118, 3558 (2003); S. Ogut, J.R. Chelikowsky, Phys. Rev. B 55, R4914 (1997)

    Article  ADS  Google Scholar 

  9. K. Balasubramanian, Chem. Rev. (Washington, D.C.) 90, 83 (1990); K.S. Pitzer, K. Balasubramanian, J. Phys. Chem. 86, 3068 (1982); K. Balasubramanian, K.S. Pitzer, J. Chem. Phys. 78, 321 (1983); K. Balasubramanian, D. Majumdar, J. Chem. Phys. 115, 8795 (2001); D. Dai, K. Balasubramanian, J. Chem. Phys. 96, 8345 (1992); D. Dai, K. Balasubramanian, J. Phys. Chem. 96, 9236 (1992); D. Dai, K. Balasubramanian, Chem. Phys. Lett. 271, 118 (1997); C. Zhao, K. Balasubramanian, J. Chem. Phys. 116, 10287 (2002); K. Balasubramanian, J. Chem. Phys. 85, 3401 (1986)

    Google Scholar 

  10. B. Wang, L.M. Molina, M.J. Lopez, A. Rubio, J.A. Alonso, M.J. Stott, Ann. Phys. 7, 107 (1998); L.M. Molina, M.J. Lopez, A. Rubio, L.C. Balbas, J.A. Alonso, Adv. Quantum Chem. 33, 329 (1999); M.P. Iniguez, M.J. Lopez, J.A. Alonso, J.M. Soler, Z. Phys. D: At. Mol. Clusters 11, 163 (1989); A. Rubio, L.C. Balbas, J.A. Alonso, Physica B 167, 19 (1990); A.M. Mazzone, Phys. Rev. B 54, 5970 (1996); S.K. Lai, P.J. Hsu, W.K. Liu, M. Iwamatsu, J. Chem. Phys. 117, 10175 (2002); B. Wang, J. Zhao, X. Chen, D. Shi, G. Wang, Phys.Rev.A 71, 033201 (2005); C. Rajesh, C. Majumder, M.G.R. Rajan, S.K. Kulshreshtha, Phys. Rev. B 72, 235411 (2005); C. Rajesh, C. Majumder, J. Chem. Phys. 126, 244704 (2007)

    Google Scholar 

  11. C. Majumder, V. Kumar, H. Mizesuki, Y. Kawazoe, Phys. Rev. B 64, 233405 (2001); K. Joshi, D.G. Kanhere, S.A. Blundell, Phys. Rev. B 66, 155329 (2002); P. Jackson, I.G. Dance, K.J. Fisher, G.D. Willett, G.E. Gadd, Int. J. Mass Spectrom. Ion Proc. 157/158, 329 (1996); A.B. Anderson, Chem. Phys. 63, 4430 (1975)

    Article  ADS  Google Scholar 

  12. D. Dai, K. Balasubramanian, J. Chem. Phys. 96, 8345 (1991); D. Dai, K. Balasubramanian, J. Phys. Chem. 96, 9236 (1992); D. Dai, K. Balasubramanian, J. Phys. Chem. 100, 19321(1996); D. Dai, K. Balasubramanian, J. Chem. Phys. 108, 4379 (1998)

    Article  ADS  Google Scholar 

  13. M. Ohara, K. Koyasu, A. Nakajima, K. Kaya, Chem. Phys. Lett. 371, 490 (2003)

    Article  ADS  Google Scholar 

  14. J.M. Goicoechea, S.C. Sevov, J. Am. Chem. Soc. 127, 7676 (2005); J.M. Goicoechea, S.C. Sevov, Angew. Chem. Int. Ed. 44, 4026 (2005)

    Article  Google Scholar 

  15. J.M. Goicoechea, S.C. Sevov, J. Am. Chem. Soc. 128, 4155 (2006)

    Article  Google Scholar 

  16. F. Hagelberg, C. Xiao, W. Lester, Phys. Rev. B 67, 035426 (2003)

    Article  ADS  Google Scholar 

  17. S. Neukermans, X. Wang, N. Veldeman, E. Janssens, R.E. Silverans, P. Lievens, Int. J. Mass. Spectrom. 252, 145 (2006)

    Article  ADS  Google Scholar 

  18. X. Zhang, G. Li, X. Xing, X. Zhao, Z. Tang, Z. Gao, Rapid Commun. Mass Spectrom. 15, 2399 (2001)

    Article  Google Scholar 

  19. X. Xing, Z. Tian, H. Liu, Z. Tang, Rapid Commun. Mass Spectrom. 17, 1411 (2003)

    Article  Google Scholar 

  20. L.F. Cui, X. Huang, L.-M. Wang, D.Y. Zubarev, A.I. Boldyrev, J. Li, L.-S. Wang, J. Am. Chem. Soc. 128, 8390 (2006); L.F. Cui, X. Huang, L.M. Wang, J. Li, L.-S. Wang, Phys. Chem. A 110, 10169 (2006)

    Article  Google Scholar 

  21. L.F. Cui, X. Huang, L.M. Wang, J. Li, L.-S. Wang, Angew. Chem. Int. Ed. 46, 742 (2007)

    Article  Google Scholar 

  22. V. Kumar, A. Singh, Y. Kawazoe, Nano Lett. 4, 677 (2004)

    Article  ADS  Google Scholar 

  23. V. Kumar, Y. Kawazoe, Appl. Phys. Lett. 83, 2677 (2003); V. Kumar, Y. Kawazoe, Appl. Phys. Lett. 80, 859 (2002)

    Article  ADS  Google Scholar 

  24. V. Kumar, Y. Kawazoe, Appl. Phys. Lett. 80, 859 (2002)

    Article  ADS  Google Scholar 

  25. E.N. Esenturk, J. Fettinger, B. Eichhorn, J. Am. Chem. Soc. 128, 9178 (2006)

    Article  Google Scholar 

  26. E.N. Esenturk, J. Fettinger, B. Eichhorn, Chem. Commun. 2, 247 (2005)

    Article  Google Scholar 

  27. E.N. Esenturk, J. Fetteinger, Y.-F. Lam, B. Eichhorn, Angew. Chem. Int. Ed. 43, 2132 (2004)

    Article  Google Scholar 

  28. J.P. Dognon, C. Clavaguéra, P. Pyykkö, Angew. Chem. Int. Ed. 46, 1427 (2007)

    Article  Google Scholar 

  29. A.K. Kandalam, G. Chen, P. Jena, Appl. Phys. Lett. 92, 143109 (2008)

    Article  ADS  Google Scholar 

  30. X. Chen, G.L. Lu, C.M. Tang, K.M. Deng, W.S. Tan, Acta Physica Sinica 9, 5216 (2007)

    Google Scholar 

  31. S. Neukermans, E. Janssens, Z.F. Chen, R.E. Silverans, P.V.R. Schleyer, P. Lievens, Phys. Rev. Lett. 92, 163401 (2004)

    Article  ADS  Google Scholar 

  32. D.-L. Chen, W.Q. Tian, C.-C. Sun, Phys. Rev. A 75, 013201 (2007)

    Article  ADS  Google Scholar 

  33. C. Rajesh, C. Majumder, Chem. Phys. Lett. 430, 101 (2006); C. Rajesh, C. Majumder, J. Chem. Phys. 128, 024308 (2008)

    Article  ADS  Google Scholar 

  34. VIENNA ab initio simulation package, Technische Universitaet Wien, 1999; G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993); G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996); G. Kresse, J. Joubert, Phys. Rev. B 59, 1758 (1999)

    Google Scholar 

  35. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  36. P.E. Bloechl, Phys. Rev. B 50, 17953 (1994); P.E. Bloechl, C. Foerst, J. Schimpl, Bull. Mater. Sci. 26, 33 (2003)

    Article  ADS  Google Scholar 

  37. C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1996), p. 57

    Google Scholar 

  38. B. Waldschmidt, S. Barman, C. Rajesh. C. Majumder, G.P. Das, R. Schafer, Phys. Rev. B 79, 045422 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Majumder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barman, S., Rajesh, C., Das, G. et al. Structural and electronic properties of Snn-1Pb and Pbn-1Sn clusters: a theoretical investigation through first principles calculations. Eur. Phys. J. D 55, 613–625 (2009). https://doi.org/10.1140/epjd/e2009-00235-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2009-00235-1

PACS

Navigation