Skip to main content
Log in

A density-functional study of aluminium, iron, zirconium and cerium microclusters

  • Clusters and Nanostructures
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The geometries and electronic structural properties of AB and ABC (A, B, C = Al, Fe, Zr, Ce) microclusters have been systematically investigated by using a hybrid density-functional method (B3LYP) approach. The spectroscopic constants of ground-state AB and ABC (A, B, C = Al, Fe, Zr, Ce) are obtained, and are found to be in agreement with other available experimental and theoretical results. The calculated gaps between highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO-LUMO) are clearly changed when X is doped into the AB dimers (X = Al, Fe, Zr, Ce). The calculated results indicate that a triangular form with D3h, C2v or Cs symmetry is the most stable for the corresponding ABC trimers, and, in addition, the possible isomers (linear structure) with D∞h or C∞v symmetry of three-atom clusters were found to be of higher energies. We conclude that AlFe and Al2Fe have the highest chemical stability of all the AB dimers and ABC trimers, respectively, due to the high HOMO-LUMO gap. We also find that the binding energy of Ce3 is the largest in magnitude among all ABC (A, B, C = Al, Fe, Zr, Ce) trimers, as is the case with Ce2 among all AB (A, B, C = Al, Fe, Zr, Ce) dimers. The most stable geometry, charge transfer and possible dissociation channels are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • J.A. Alonso, Structure and Properties of Atomic Nanoclusters (Imperial College Press, London 2005)

  • Atomic Clusters and Nanoparticles, NATO Advanced Study Institute, les Houches Session LXXIII, les Houches, 2000, edited by C. Guet, P. Hobza, F. Spiegelman, F. David (EDP Sciences and Springer Verlag, Berlin, 2001)

  • Latest Advances in Atomic Cluster Collisions: Fission, Fusion, Electron, Ion and Photon Impact, edited by J.P. Connerade, A.V. Solov’yov (Imperial College Press, London, 2004)

  • P.G. Reinhard, E. Suraud, Introduction to Cluster Dynamics (Wiley-VCH, Weinheim, 2004)

  • F. Baletto, R. Ferrando, Rev. Mod. Phys. 77, 371 (2005)

    Google Scholar 

  • M.D. Deshpande, D.G. Kanhere, Phys. Rev. B 68, 035428 (2003)

    Google Scholar 

  • P. Calaminici, N. Russo, M. Toscano, Z. Phys. D 33, 281 (1995)

    Google Scholar 

  • G.F. Li, P. Peng, Z.Q. Qiu, F. Yang, S.C. Han, Chin. J. Nonferrous Met. 16, 0823 (2006)

    Google Scholar 

  • D. Majumdar, D. Dai, K. Balasubramanian, J. Chem. Phys. 113, 7919 (2000)

    Google Scholar 

  • P. Mlynarski, D.R. Salahub, J. Chem. Phys. 95, 6050 (1991)

    Google Scholar 

  • D. Dai, K. Balasubramanian, Chem. Phys. Lett. 310, 303 (1999)

    Google Scholar 

  • M. Castro, D.R. Salahub, Phys. Rev. B 49, 11842 (1994)

    Google Scholar 

  • M.D. Morse, Chem. Rev. 86, 1049 (1986)

    Google Scholar 

  • K. Balasubramanian, J. Mol. Struct. Theochem 202, 291 (1991)

    Google Scholar 

  • K. Balasubramanian, J. Phys. Chem. 93, 6585 (1989)

    Google Scholar 

  • K. Balasubramanian, Relativistic Effects in Chemistry (Wiley, New York, 1997), Part B

  • W. Weltner, R.J. Van Zee, Annu. Rev. Phys. Chem. 30, 291 (1986)

    Google Scholar 

  • T.M. Duncan, K.W. Zilm, D.A. Hamilton, T.W. Root, J. Phys. Chem. 93, 2583 (1989)

    Google Scholar 

  • K.W. Zilm, L. Bonneviot, G.L. Haller, O.H. Ham, M. Kermaree, J. Phys. Chem. 94, 8495 (1990)

    Google Scholar 

  • S. Bjornholm, Contemp. Phys. 31, 309 (1990)

    Google Scholar 

  • T.P. Martin, T. Bergmann, G. Golich, T. Lange, Chem. Phys. Lett. 176, 343 (1991)

    Google Scholar 

  • G. Schmid, Struct. Bonding (Berlin) 62, 51 (1981)

    Google Scholar 

  • X. Li, H. Wu, X.B. Wang, L.S. Wang, Phys. Rev. Lett. 81, 1090 (1998)

    Google Scholar 

  • B.K. Rao, P. Jena, J. Chem. Phys. 111, 1890 (1999)

    Google Scholar 

  • R. Ahlrichs, S.D. Elliott, Chem. Phys. 1, 13 (1999)

    Google Scholar 

  • J. Akola, H. Hakkinen, M. Manninen, Phys. Rev. B 58, 3601 (1998)

    Google Scholar 

  • Z.E. Bayyari, S. Erkoc, Phys. Stat. Sol. B 170, 103 (1992)

    Google Scholar 

  • Y. Ouyang, H. Chen, X. Zhong, Theor. Chem. Acc. 115, 32 (2006)

    Google Scholar 

  • F.Y. Hao, Y.F. Zhao, X.Y. Li, F.L. Liu, J. Mol. Struct. Theochem 807, 153 (2007)

    Google Scholar 

  • A. Nakajima, K. Hoshino, T. Naganuma, Y. Sone, K. Kaya, J. Chem. Phys. 95, 7061 (1991)

    Google Scholar 

  • B.K. Rao, P. Jena, J. Phys. Chem. 113, 1508 (2000)

    Google Scholar 

  • J. Xiang, S.H. Wei, X.H. Yan, J.Q. You, Y.L. Mao, J. Chem. Phys. 120, 4251 (2004)

    Google Scholar 

  • Y.H. Qu, W.Y. Ma, X.F. Bian, H.W. Tang, W.X. Tian, J. Mol. Graph. Mod. 24, 167 (2005)

    Google Scholar 

  • Y.F. Ouyang, J.C. Wang, Y.H. Hou, X.P. Zhong, Y. Du, Y.P. Feng, J. Chem. Phys. 128, 074305 (2008)

    Google Scholar 

  • K.M. Ervin, J. Ho, W.C. Lineberger, J. Chem. Phys. 89, 4514 (1988)

    Google Scholar 

  • W.J. Zhao, X.L. Lei, Y.L. Yan, Z. Yang, Y.H. Luo, Chin. Phys. Soc. 56, 5210 (2007)

    Google Scholar 

  • M.J. Frisch et al., Gaussian 03, Gaussian (Inc., Pittsburgh, PA, 2003)

  • A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Google Scholar 

  • C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Google Scholar 

  • B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157, 200 (1989)

    Google Scholar 

  • M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. 86, 866 (1987)

    Google Scholar 

  • K.A. Peterson, D. Figgen, M. Dolg, H. Stoll, J. Chem. Phys. 126, 124101 (2007)

    Google Scholar 

  • M. Huelsen, A. Weigand, M. Dolg, Theor. Chem. Acc. 122, 23 (2009)

    Google Scholar 

  • http://www.theochem.uni-stuttgart.de/pseudopotentials/clickpse.en.html

  • M.F. Cai, T.P. Djugan, V.E. Bondybey, Chem. Phys. Lett. 155, 430 (1989)

    Google Scholar 

  • H. Basch, W.J. Stevens, M. Krauss, Chem. Phys. Lett. 109, 212 (1984)

    Google Scholar 

  • C.W. Bauschlicher, Jr., H. Partridge, S.R. Langhoff, P.R. Taylor, S.P. Walch, J. Chem. Phys. 86, 7007 (1987)

    Google Scholar 

  • N.E. Schultz, G. Staszewska, P. Staszewski, D.G. Truhlar, J. Phys. Chem. B 108, 4850 (2004)

    Google Scholar 

  • K.K. Sunil, K.D. Jordan, J. Chem. Phys. 92, 2774 (1988)

    Google Scholar 

  • K.P. Huber, G. Herzberg, Molecular spectra & molecular structure, constants of diatomic molecules (Van Nostrand-Reinhold, NewYork, 1979)

  • B.V. Reddy, S.N. Khanna, S.C. Deevi, Chem. Phys. Lett. 333, 465 (2001)

    Google Scholar 

  • J.S. Tse, J. Mol. Struct. 165, 21 (1988)

    Google Scholar 

  • K.A. Gingerich, Faraday Symp. Chem. Soc. 14, 109 (1980)

    Google Scholar 

  • H. Oymak, S. Erkoc, Phys. Rev. A 66, 033202 (2002)

    Google Scholar 

  • T.H . Upton, Phys. Rev. Lett. 56, 2168 (1986)

  • T.H. Upton, J. Chem. Phys. 86, 7054 (1987)

    Google Scholar 

  • H. Basch, Chem. Phys. Lett. 136, 289 (1987)

    Google Scholar 

  • J.A. Howard, R. Sutcliffe, J.S. Tse, H. Dahmane, B. Mile, J. Chem. Phys. 89, 3595 (1985)

    Google Scholar 

  • G. Pacchioni, J. Koutecky, B. Bunsenges, Phys. Chem. 88, 242 (1984)

    Google Scholar 

  • S. Erkoc, S. Katircioglu, Phys. Stat. Sol. 152, K37 (1989)

  • C. Majumder, S.K. Kulsheshtha, Chem. Phys. Lett. 323, 393 (2000)

    Google Scholar 

  • S.H. Yang, D.A. Drabold, J.B. Adams, A. Sachdev, Phys. Rev. B 47, 1567 (1993)

    Google Scholar 

  • O. Hübner, J. Sauer, Chem. Phys. Lett. 358, 442 (2002)

    Google Scholar 

  • J. Harris, R.O. Jones, J. Chem. Phys. 70, 830 (1979)

    Google Scholar 

  • H. Purdum, P.A. Montano, G.K. Shenoy, T. Morrison, Phys. Rev. B 25, 4412 (1982)

    Google Scholar 

  • D.G. Leopold, W.C. Lineberger, J. Chem. Phys. 85, 51 (1986)

    Google Scholar 

  • P.A. Montano, G.k. Shenoy, Solid State Commun. 35, 53 (1980)

  • I. Shim, K.A. Gingerich, J. Chem. Phys. 77, 2490 (1982)

    Google Scholar 

  • T. Noro, C. Ballard, M.H. Palmer, H. Tatewaki, J. Chem. Phys. 100, 452 (1994)

    Google Scholar 

  • P. Ballone, R.O. Jones, Chem. Phys. Lett. 233, 632 (1995)

    Google Scholar 

  • M. Moskovits, D.P. Dilella, W. Limm, J. Chem. Phys. 80, 626 (1984)

    Google Scholar 

  • E.M. Nour, C. Alfaro-Franco, K.A. Gingerich, J. Lanne, J. Chem. Phys. 86, 4779 (1987)

    Google Scholar 

  • J.L. Chen, C.S. Wang, K.A. Jackson, M.A. Pederson, Phys. Rev. B 44, 6558 (1991)

    Google Scholar 

  • J. Koutecky, P. Fantucci, Chem. Rev. 86, 539 (1986)

    Google Scholar 

  • K. Balasubramanian, C. Ravimoban, J. Chem. Phys. 92, 3659 (1990)

    Google Scholar 

  • C.W.J. Bauschlicher, H. Partridge, S.R. Langhoff, M. Rosi, J. Chem. Phys. 95, 1057 (1991)

    Google Scholar 

  • W.E. Klotzbucher, G.A. Ozin, Inorg. Chem. 19, 3767 (1980)

    Google Scholar 

  • M. Doverstal, B. Lindgren, U. Sassenberg, C.A. Arrington, M.D. Morse, J. Chem. Phys. 97, 7087 (1992)

    Google Scholar 

  • M. Doverstal, L. Karlsson, B. Lindgren, U. Sassenberg, J. Phys. B: At. Mol. Opt. Phys. 31, 795 (1998)

    Google Scholar 

  • C.C. Wang, R.N. Zhao, J.G. Han, J. Chem. Phys. 124, 194301 (2006)

    Google Scholar 

  • C.A. Arrington, T. Blume, M.D. Morse, M. Doverstal, U. Sassenberg, J. Phys. Chem. 98, 1398 (1994)

    Google Scholar 

  • H. Haouari, H. Wang, R. Craig, J.R. Lombardi, D.M. Lindsay, J. Phys. Chem. 103, 9527 (1995)

    Google Scholar 

  • D. Dai, K. Balasubramanian, Chem. Phys. Lett. 231, 352 (1994)

    Google Scholar 

  • Z.J. Wu, H.J. Zhang, J. Meng, Z.W. Dai, B. Han, P.C. Jin, J. Phys. Chem. 121, 4699 (2004)

    Google Scholar 

  • X.Y. Cao, M. Dolg, Theor. Chem. Acc. 108, 14 (2002)

    Google Scholar 

  • X. Shen, L. Fang, X. Chen, J.R. Lombardi, J. Chem. Phys. 113, 2233 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. F. Ouyang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouyang, Y., Zhai, D., Fang, J. et al. A density-functional study of aluminium, iron, zirconium and cerium microclusters. Eur. Phys. J. D 54, 629–641 (2009). https://doi.org/10.1140/epjd/e2009-00198-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2009-00198-1

PACS

Navigation