Skip to main content
Log in

Density functional study of the electronic structure and properties of lithium intercalated graphite

  • Clusters and Nanostructures
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Ab initio electronic-structure calculations are performed using density functional theory (DFT) with polarized basis set (LanL2DZ and 6-311G++) within the spin polarized generalized gradient approximation for lithium intercalated graphite. Initially different benzene-Li+ model clusters are optimized on the basis of their total energy at room temperature. These model clusters are used to calculate the optimized structure of lithium intercalated graphite clusters. The resultant optimized structures are used to calculate dipole moment, ionization potential (IP), electron affinity (EA), binding energy (BE) and vibrational spectra (IR and Raman). For an idea of the band gap of the clusters in the ground state, the HOMO-LUMO gap (ΔEg) has been calculated. To compare the electron transfer ability of different clusters, chemical potential (μ), hardness (η) and their ratio \(({|{\frac{\mu}{\eta}}|})\) for different clusters have also been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C. Julien, G.A. Nazri, Solid State Batteries: Materials Design and Optimization (Kluwer Academic Publishers, Norwell, MA, 1994)

  • A.R. Armstrong, P.G. Bruce, Nature 381, 499 (1996)

    Google Scholar 

  • M. Brousselya, P. Biensan, B. Simon, Electrochimica Acta 45, 3 (1999)

    Google Scholar 

  • W.R. McKinnon, R.R. Haering, in Modern Aspects of Electrochemistry, edited by B. Conway, R.E. White, J. O’Mara Bockris (Plenum Press, New York, 1983), Vol. 15, p. 235

  • D.P. Wilkinson, J.R. Dahn, U. von Sacken, D.T. Fouchard, The Electrochemical Society Extended Abstracts (Seattle, Washington, USA, 1990), Vol. 90, pp. 85–87

  • U. von Sacken, J.R. Dahn, Electrochimica Acta 45, 121 (1999)

    Google Scholar 

  • J.R. Dahn, R. Fong, M.J. Spoon, Phys. Rev. B 42, 6424 (1990)

    Google Scholar 

  • J.R. Dahn, Phys. Rev. B 44, 9170 (1991)

    Google Scholar 

  • K.R. Kganyago, P.E. Ngoepe, C.R.A. Catlow, Solid State Ionics 159, 21 (2003)

    Google Scholar 

  • N. Chakraborti, R. Jayakanth, S. Das, E.D. Çalişir, Ş. Erkoç, J. Phase Equilib. Diffus. 28, 140 (2007)

    Google Scholar 

  • K. Nishidate, K. Sasaki, Y. Oikawa, M. Babu, M. Hasegawa, Surf. Sci. Nanotech. 3, 385 (2005)

    Google Scholar 

  • K. Burke, J.P. Perdew, Y. Wang, in Electronic Density Functional Theory: Recent Progress and New Directions, edited by J.F. Dobson, G. Vignale, M.P. Das (Plenum, 1998)

  • J.P. Perdew, in Electronic Structure of Solids ’91, edited by P. Ziesche, H. Eschrig (Akademie Verlag, Berlin, 1991)

  • J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jakson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Google Scholar 

  • J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jakson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 48, 4978 (1993)

    Google Scholar 

  • J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 54, 16533 (1996)

    Google Scholar 

  • J. Wang, J.G. Han, J. Chem. Phys. 123, 064306 (2005)

    Google Scholar 

  • J.G. Han, F. Hagelberg, J. Mol. Struct. Theochem 549, 165 (2001)

    Google Scholar 

  • P. Guo, Z.Y. Ren, F. Wang, J. Bian, J.G. Han, G.H. Wang, J. Chem. Phys. 121, 12265 (2004)

    Google Scholar 

  • L.J. Guo, X. Liu, G.F. Zhaoa, Y.H. Luo, J. Chem. Phys. 126, 234704 (2007)

    Google Scholar 

  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery Jr, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian 98, Revision A.9 (Gaussian Inc., Pittsburgh PA, 1998)

  • L.G. Scanlon, D.M. Storch, J.H. Newton, G. Sandi, Energy Conservation Engineering Conference, IEEE-97, Proceedings of the 32nd Intersociety (1997), Vol. 1, pp. 87–92

  • R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford Science Publications, New York, 1989), pp. 91–92

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bandyopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandyopadhyay, D. Density functional study of the electronic structure and properties of lithium intercalated graphite. Eur. Phys. J. D 54, 643–655 (2009). https://doi.org/10.1140/epjd/e2009-00189-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2009-00189-2

PACS

Navigation