Skip to main content
Log in

Hot spots and filaments in the pinch of a plasma focus: a unified approach

  • Topical issue: 23rd Symposium on Plasma Physics and Technology
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

To date, no MHD-based complete description of the tiny, relatively stable, well-ordered structures (hot spots, filaments) observed in the pinch of a plasma focus seems to be feasible. Indeed, the large value of electron density suggests that a classification of such structures which is based on the approximation of local thermodynamical equilibrium (LTE) is possible. Starting from an often overlooked, far-reaching result of LTE, we derive a purely analytical description of both hot spots and filaments. In spite of their quite different topology, both configurations are extremals of the same variational principle. Well-known results of conventional MHD are retrieved as benchmark cases. It turns out that hot spots satisfy Taylor’s principle of constrained minimum of magnetic energy, the constraint being given by fixed magnetic helicity. Filaments are similar to the filaments of a superconductor and form a plasma with β= 0.11 and energy diffusion coefficient = 0.88 DBohm. Any process – like e.g. radiative collapse – which raises particle density while reducing radial size may transform filaments into hot spots. A well-known scaling law is retrieved – the collisional Vlasov high beta scaling. A link between dissipation and topology is highlighted. Accordingly, a large-current pinch may give birth to tiny hot spots with large electron density and magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • L. Soto, Plasma Phys. Contr. Fusion 47, A361 (2005)

  • H. Herold et al., Nucl. Fusion 29, 1255 (1989)

  • V.A. Gribkov et al., Self-organising Current-Plasma Structures and Their Effect on Plasma Dynamics in a Plasma Focus, ICPP & 25th EPS Conf. Contr. Fusion Plasma Phys., Praha, June 29 – July 3, 1998, ECA Vol. 22C, 2272–2275 (1998)

  • A. Matusiak et al., Włokniste Struktury Plazmowe, Institute Nuclear Research report INR/1857/XXIV/PP/B (1980) (in Polish)

  • L. Jakubowski et al., Braz. J. Phys. 32, 1871 (2002)

  • A. Galkowski et al., Ion Motion Modelling within Dynamic Filamentary PF Pinch Column, Proc. 18th IAEA FEC, Sorrento, Italy (2000)

  • W.H. Bostick et al., On the Nature of Highly Localised X-Ray Sources in the Plasma Focus, Proc. 2nd Intl. Conf. Pulsed & High Beta Plasmas, Garching (1972)

  • J.S. Brzosko et al., Nuclear Reactivity In Submillimetric Domains Of Focussed Discharges, 16th EPS, Venezia (1989)

  • L. Jakubowski et al., Recent Observations of X Rays And E-Beams In PF Discharges, Proc. 26th EPS Conf. Contr. Fusion Plasma Phys., Maastricht (1999)

  • L. Jakubowski et al., Measurement of Charged Particle Beams from PF Discharges, Proc. 18th IAEA FEC, Sorrento, Italy (2000)

  • J. Abdallah Jr et al., Simulation of the Satellite Spectrum Produced In PF Experiments, http://www.physics.ucla.edu/icnsp/Html/abdallah/abdallah.htm

  • K.N. Koshelev et al., J. Phys. D: Appl. Phys. 21, 1827 (1988)

    Google Scholar 

  • M. Scholz et al., Study of current sheath dynamics and charged particle emission from PF-1000 facility, ICPP & 25th EPS Conf. Contr. Fusion Plasma Phys., Praha (1998)

  • J. Brzosko et al., Breeding 1010 /s radioactive nuclei in a compact PF device (2001), www.ornl.gov/ webworks/cppr/y2001/pres/111396.pdf

  • G.J. Morales et al., Plasma Phys. Contr. Fusion 41, A519 (1999)

  • R. Kinney et al., Phys. Plasmas 1, 260 (1994)

  • S. Cable et al., Phys. Rev. A 46, 3413 (1992)

  • F. Faddeev et al., J. Phys. A 35, L133 (2002)

  • J.J.E. Herrera et al., On The Magnetohydrodynamic Evolution Of The m = 0 Instability In The Dense Z-Pinch (1998), http://epsppd.epfl.ch/Praha/WEB/98ICPP_W/L003PR.PDF

  • V.V. Vikhrev et al., Sov. J. Plasma Phys. 8, 688 (1982)

  • V. Nardi, Toroidal Vortices in Pulsed Plasmas, Proc. 2nd Intl. Conf. Pulsed High Beta Plasmas, Garching (1972)

  • W. Bostick, Int. J. Fusion Energy 3, 68 (1985)

    Google Scholar 

  • J.B. Taylor, Phys. Rev. Lett. 33, 1139 (1974)

    Google Scholar 

  • L.P.J. Kamp et al., J. Plasma Phys. 70, 113 (2004)

  • L.P.J. Kamp et al., Phys. Plasmas 10, 157 (2003)

  • P. Glansdorff et al., Physica 30, 351 (1964)

  • V.M. Faddeev et al., Self-organization of high current plasma: The formation and the equilibrium of toroidal plasmoid in a cavity of pinch neck (2001), www.ifpilm.waw.pl/Plasma2001/Prace1/P1.12.pdf

  • S.R. DeGroot et al., Non-Equilibrium Thermodynamics (North Holland, 1962)

  • E.T. Jaynes, Ann. Rev. Phys. Chem. 31, 579 (1980)

    Google Scholar 

  • F.L. Hinton et al., Rev. Mod. Phys. 48, 239 (1976)

  • A.H. Boozer, Phys. Fluids B 4, 2845 (1992)

    Google Scholar 

  • K. Molvig et al., Phys. Fluids 27, 2847 (1984)

  • A. Di Vita, J. Plasma Phys. 46, 423 1991)

    Google Scholar 

  • M. Brusati et al., J. Plasma Phys. 50, 210 (1993)

  • R. Balescu, Trans. Fusion Technol. 25, 105 (1994)

    Google Scholar 

  • F. Pegoraro, Fusion Technol. 26, 1243 (1994)

  • A. Rogister et al., Phys. Fluids B 4, 804 (1992)

  • I. Prigogine et al., Chemical Thermodynamics (Longmans-Green, 1954)

  • S.I. Braginskij, Transport Processes In A Plasma Review Plasma Physics, edited by Leontovich (Consultants Bureau, New York, 1965)

  • A. Di Vita, Proc. R. Soc. A 458, 21 (2002)

    Google Scholar 

  • A.H. Boozer, J. Plasma Phys. 35, 133 (1986)

    Google Scholar 

  • E. Rebhan, Phys. Rev. A 32, 581 (1985)

    Google Scholar 

  • L.D. Landau et al., Electrodynamics Of Continuous Media (Pergamon, 1960)

  • V. Antoni et al., Nucl. Fusion 29, 1759 (1989)

  • H.A.B. Bodin, Nucl. Energy 29, 57 (1990)

    Google Scholar 

  • H. Froehlich, Proc. Phys. Soc. 87, 330 (1966)

    Google Scholar 

  • L.D. Landau et al., Statistical Physics – Theory Of The Condensed State (Pergamon, 1960)

  • J.B. Taylor, Plasma Phys. Contr. Fusion 39, A1 (1997)

  • J.B. Taylor et al., Phys. Fluids 17, 1492 (1971)

  • L. Turner, IEEE Trans. Plasma Sci. PS-14, 849 (1986)

    Google Scholar 

  • A. Sestero, Plasma Phys. 22, 1039 (1980)

  • A. Di Vita, J. Plasma Phys. 50, 1 (1993)

    Google Scholar 

  • M. Steenbeck, Wissenschaftlichen Veroeffentlichungen Siemens Werke 1, 59 (German, 1940)

  • I.V. Elsgolts, Differential Equations And Variational Calculus (Mir, Moscow, 1981)

  • V.I. Smirnov, Course Of Higher Mathematics (Mir, Moscow, 1977)

  • L.D. Landau et al., Statistical Physics (Pergamon, 1960)

  • J.W. Connor et al., Nucl. Fusion 17, 1047 (1977)

  • A. Bernard et al., J. Moscow Phys. Soc. 8, 93 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Di Vita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Vita, A. Hot spots and filaments in the pinch of a plasma focus: a unified approach. Eur. Phys. J. D 54, 451–461 (2009). https://doi.org/10.1140/epjd/e2009-00092-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2009-00092-x

PACS

Navigation