Skip to main content
Log in

Special analytical properties of ultrastrong coherent fields

  • Highlight Paper
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Emerging ultrastrong-laser capabilities that can reveal details of vacuum structure have intensified research into the fundamentals of quantum electrodynamics. It has been more than half a century since relativistic nonperturbative methods were introduced into the study of strong-field phenomena. Much of the early progress remains of fundamental relevance, but is known to only a small group of researchers. The aim of this paper is to reveal some of that work and to show how it impacts on current investigations. A basic result is that it has been shown that strong, single-mode fields (i.e. laser fields) can be treated by relativistic quantum mechanics with results identical to fully quantized electrodynamics. Attention is drawn to the existence of a Volkov Green’s function that has a clear physical interpretation as predicting several series of relativistic Floquet sideband states. It is more transparent and informative than the Volkov Green’s function of Schwinger. It is also shown that the fundamental experiments performed at the Stanford Linear Accelerator Center in 1997 on photon-multiphoton pair production could not be a high-order perturbative result, as was presumed by the investigators. The intensity employed was beyond the radius of convergence of perturbation theory, and the seeming perturbative increase in rate with intensity is an artifact. Of particular significance is the demonstration that a free electron in a strong plane-wave field (a “Volkov electron”) exists in an intensity-dependent superposition of angular momentum states, and is no longer a simple spin-1/2 particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. B. Odom, D. Hanneke, B. D’Urso, G. Gabrielse, Phys. Rev. Lett. 97, 030801 (2006)

    Article  ADS  Google Scholar 

  3. G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, B. Odom, Phys. Rev. Lett. 97, 030802 (2006)

    Article  ADS  Google Scholar 

  4. J.S. Toll, Ph.D. Dissertation, Princeton (1952), unpublished

  5. F.J. Dyson, Phys. Rev. 85, 631 (1952)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. D.M. Volkov, Z. Phys. 94, 250 (1935)

    Article  MATH  ADS  Google Scholar 

  7. J.H. Taub, Ann. Math. 40, 937 (1939); J.H. Taub, Rev. Mod. Phys. 21, 388 (1949)

    Article  MathSciNet  Google Scholar 

  8. N.D. Sengupta, Bull. Calcutta Math. Soc. 39, 147 (1947)

    MATH  MathSciNet  Google Scholar 

  9. H.R. Reiss, Ph.D. Dissertation, Univ. of Maryland (1958)

  10. D.L. Burke et al., Phys. Rev. Lett. 79, 1626 (1997)

    Article  ADS  Google Scholar 

  11. H.R. Reiss, Phys. Rev. Lett. 26, 1072 (1971)

    Article  ADS  Google Scholar 

  12. H.R. Reiss, J. Math. Phys. 3, 59 (1962)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. H.R. Reiss, J. Math. Phys. 3, 387 (1962)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. H.R. Reiss, Phys. Rev. A 22, 1786 (1980)

    Article  ADS  Google Scholar 

  15. H.R. Reiss, J.H. Eberly, Phys. Rev. 151, 1058 (1966)

    Article  ADS  Google Scholar 

  16. Z. Fried, J.H. Eberly, Phys. Rev. 136, B871 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  17. J.H. Eberly, H.R. Reiss, Phys. Rev. 145, 1035 (1966)

    Article  ADS  Google Scholar 

  18. A.I. Nikishov, V.I. Ritus, Z. Eksp. Teor. Fiz. 46, 776 (1964), Sov. Phys. JETP 19, 529 (1964)

    Google Scholar 

  19. L.S. Brown, T.W.B. Kibble, Phys. Rev. 133, A705 (1964)

    Article  ADS  Google Scholar 

  20. W. Pauli, V.F. Weisskopf, Helv. Phys. Acta 7, 709 (1934)

    MATH  Google Scholar 

  21. J.H. Eberly, Phys. Rev. Lett. 19, 284 (1965)

    Google Scholar 

  22. I.I. Goldman, Phys. Lett. 8, 103 (1964)

    Article  ADS  Google Scholar 

  23. J.D. Bjorken, S.D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964)

    Google Scholar 

  24. T.W.B. Kibble, Phys. Rev. 138, B740 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  25. Z. Fried, A. Baker, D. Korff, Phys. Rev. 151, 1040 (1966)

    Article  ADS  Google Scholar 

  26. P. Agostini, F. Fabre, G. Mainfray, G. Petite, N.K. Rahman, Phys. Rev. Lett. 42, 1127 (1979)

    Article  ADS  Google Scholar 

  27. P.H. Bucksbaum, M. Bashkansky, R.R. Freeman, T.J. McIlrath, L.F. DiMauro, Phys. Rev. Lett. 56, 2590 (1986)

    Article  ADS  Google Scholar 

  28. H.R. Reiss, J. Phys. B 20, L79 (1987)

  29. H.R. Reiss, J. Opt. Soc. Am. B 7, 574 (1990)

    Article  ADS  Google Scholar 

  30. J.A. Wheeler, R.P. Feynman, Rev. Mod. Phys. 17, 157 (1945)

    Article  ADS  Google Scholar 

  31. J.A. Wheeler, R.P. Feynman, Rev. Mod. Phys. 21, 425 (1949)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. J. Weber, General Relativity and Gravity Waves (Interscience, New York, 1961)

    Google Scholar 

  33. N.B. Narozhny, private communication

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Reiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiss, H. Special analytical properties of ultrastrong coherent fields. Eur. Phys. J. D 55, 365–374 (2009). https://doi.org/10.1140/epjd/e2009-00039-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2009-00039-3

PACS

Navigation