Skip to main content

Advertisement

Log in

N–O mix optimisation in low energy dense DC glow surface Ti conditioning

  • Topical issue: 23rd Symposium on Plasma Physics and Technology
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Samples of pure titanium have been treated by means a plasma immersed ion implantation (PIII) process in a DC glow discharge in pure oxygen and in different nitrogen-oxygen mixtures. In contrast with conventional voltage supply based glow PIII, the present study has been conducted with a novel specifically designed high current supply which allows a high electron density to be kept constant, regardless of gas pressure variations, within the operational ranks. Thus, the acquired sample characteristics can be more clearly ascribed to the chemical composition of the mixture. One stratified TiO2 (rutile) and TiN0.26 layer was identified from XRD and Raman spectroscopy, both of these compounds reputedly being highly biocompatible. The superficial hardness of the samples was improved up to more than five times that of the untreated reference sample, namely, ∼1600 Vickers microhardness (10 g load) thanks to a 2–6 μm deep implanted layer. These optimal results have been obtained from an 80% nitrogen 20% oxygen mixture at 1×10-2 torr. Furthermore, with this gas proportion, the best roughness finishing of the sample set was accomplished, which can be relevant for biocompatible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • D.R. Askeland, P.P. Phulé, The Science and Engineering of Materials, 4th edn. (Thomson-Engineering, 2002)

  • X. Tian, C. Gong, S. Yang, Z. Luo, R.K.-Y. Fu, P.K. Chu, IEEE Trans. Plasma Sci. 34, 1235 (2006)

    Google Scholar 

  • X. Liu, P.K. Chu, C. Ding, Mater. Sci. Eng. 47, 49 (2004)

    Google Scholar 

  • P.A. Lilley, G.W. Blunn, in Proceedings of the IEE Conference Publication No. 435: 5th International Conference on FACTORY 2000 (1997)

  • R.N. Tarrant, S. Devasahayam, D.R. McKenzie, M.M.M. Bilek, Plasma Sources Sci. Technol. 15, 384 (2006)

    Google Scholar 

  • S. Mändl, D. Krause, G. Thorwarth, R. Sader, F. Zeilhofer, H.H. Horch, B. Rauschenbach, Surf. Coat. Technol. 142–144, 1046 (2001)

    Google Scholar 

  • E.E. Granda-Gutiérrez, R. López-Callejas, R. Peña-Eguiluz, A. Mercado-Cabrera, R. Valencia A., S.R. Barocio, O.G. Godoy-Cabrera, A. de la Piedad-Beneitez, J.S. Benítez-Read, J.O. Pacheco-Sotelo, in Proceedings of the 25th IASTED International Conference on Modelling, Identification and Control (2006), Vol. 500, p. 255

  • E.E. Granda-Gutiérrez, R. López-Callejas, R. Peña-Eguiluz, J.S. Benítez-Read, J.O. Pacheco-Sotelo, R. Valencia A., A. Mercado-Cabrera, S.R. Barocio, Surf. Coat. Technol. 201, 5454 (2007)

  • K. Takechi, S. Otsuki, IEEE Trans. Semiconductor Manufacturing 19, 286 (2006)

    Google Scholar 

  • Y.-K. Pu, Z.-G. Guo, Z.-D. Kang, J. Ma, Z.-C. Guan, G.-Y. Zhang, E.-G. Wang, Pure Appl. Chem. 74, 459 (2002)

    Google Scholar 

  • L.H. Li, Y.Q. Wu, Y.H. Zhang, R.K.Y. Fu, P.K. Chu, J. Appl. Phys. 97, 113301 (2005)

    Google Scholar 

  • R.S. Pessoa, G. Murakami, G. Petraconi, H.S. Maciel, I.C. Oliveira, K.G. Grigorov, Braz. J. Phys. 36, 332 (2006)

    Google Scholar 

  • R. López-Callejas, R. Valencia-Alvarado, E. Muñoz-Castro, O.G. Godoy-Cabrera, J.L. Tapia Fabela, Rev. Sci. Instrum. 72, 4277 (2002)

    Google Scholar 

  • S. Leigh, A. Lin, C.C. Berndt, J. Am. Ceram. Soc. 80, 2093 (1997)

    Google Scholar 

  • H. Du, H. Chen, B.K. Moom, J.H. Shin, S.W. Lee, AZo J. Mat. Online 1, 1 (2005)

    Google Scholar 

  • M. Hassan, A. Qayyum, R. Ahmad, G. Murtaza, M. Zakaullah, J. Phys. D: Appl. Phys. 40, 769 (2007)

    Google Scholar 

  • R.T. Downs, M.Hall-Wallace, The American Mineralogist Crystal Structure Database (titanium) (2003)

  • R.T. Downs, M. Hall-Wallace, The American Mineralogist Crystal Structure Database (rutile) (2003)

  • Joint Committee on Powder Diffraction Standards (JCPDS) and International Centre for Diffraction Data (ICDD) database pdf 44-1095, 1995

  • Joint Committee on Powder Diffraction Standards (JCPDS) and International Centre for Diffraction Data (ICDD) database pdf 17-386, 1995

  • S. Mändl, B. Rauschenbach, Surf. Coat. Technol. 156, 276 (2002)

    Google Scholar 

  • J.C. Parker, R.W. Siegel, J. Mater. Res. 5, 1246 (1990)

    Google Scholar 

  • M. Franck, J.P. Celis, J.R. Roos, J. Mater. Res. 10, 119 (1995)

    Google Scholar 

  • G. Thorwarth, S. Mändl, B. Rauschenbach, Surf. Coat. Technol. 136, 236 (2001)

    Google Scholar 

  • H.C. Barshilia, K.S. Rajam, J. Mater. Res. 19, 3196 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. López-Callejas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granda-Gutiérrez, E., López-Callejas, R., Peña-Eguiluz, R. et al. N–O mix optimisation in low energy dense DC glow surface Ti conditioning. Eur. Phys. J. D 54, 281–286 (2009). https://doi.org/10.1140/epjd/e2009-00037-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2009-00037-5

PACS

Navigation