Skip to main content
Log in

Growth of gas phase nanoparticles with an accretion mechanism

  • Clusters and Nanostructures
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Nano-droplet growth in a supersaturated vapor has been investigated in a gas aggregation source using laser-ionization time-of-flight mass spectrometry. During its propagation into an atomic vapor, a small particle grows by sticking atoms on its surface. This accretion process has been highlighted through the clustering of homogeneous particles Mn and heterogeneous Mn(M2O) and Mn(MOH)2 particles in a metallic vapor and a helium buffer gas (M = Na or K). A modelization is introduced so as to connect the measured cluster mass distributions to the pertinent physical parameters. The mass distribution width is particularly sensitive to the efficiency of the first steps in the growth sequence. We used this property to compare the ability of this vapor-condensed matter phase transition to occur around various homogeneous and heterogeneous nucleation seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • W.A. De Heer, Rev. Mod. Phys. 65, 611 (1993)

    Google Scholar 

  • J.L. Katz, J. Chem. Phys. 52, 4733 (1970)

    Google Scholar 

  • H.L. Jaeger, E.J. Willson, P.G. Hill, K.C. Russell, J. Chem. Phys. 51, 5380 (1969)

    Google Scholar 

  • B.M. Smirnov, A. Ju Strizhev, Phys. Scr. 49, 615 (1994)

  • M.V. Smoluchowski, Phys. Z 17, 557 (1916); M.V. Smoluchowski, Z Phys. Chem. 92, 129 (1918)

    Google Scholar 

  • R. Jullien, New J. Chem. 14, 239 (1990)

    Google Scholar 

  • H. Hettema, J.S. McFeater, J. Chem. Phys. 105, 2816 (1996)

    Google Scholar 

  • J.M. Soler , N. García, O. Echt, K. Sattler, E. Recknagel, Phys. Rev. Lett. 49, 1857 (1982)

    Google Scholar 

  • T.P. Martin, T. Bergmann, N. Malinowski, J. Chem. Soc. Faraday Trans. 86, 2489 (1990)

    Google Scholar 

  • P. Feiden, J. Leygnier, Ph. Cahuzac, C. Bréchignac, Chem. Phys. Lett. 432, 230 (2006)

  • R. Becker, W. Döring, Ann. Phys. 24, 719 (1935)

    Google Scholar 

  • J. Zeldovitch, J. Exp. Theor. Phys. 12, 525 (1942) (in Russian)

  • M. Villarica, M.J. Casey, J. Goodisman, J. Chaiken, J. Chem. Phys. 98, 4610 (1993)

    Google Scholar 

  • C.G. Granqvist, R.A. Burhman, J. Appl. Phys. 47, 2200 (1976)

    Google Scholar 

  • J. Söderlund, L.B. Kiss, G.A. Niklasson, C.G. Granqvist, Phys. Rev. Lett. 80, 2386 (1998)

    Google Scholar 

  • M.E. Costas, M. Moreau, L. Vicente, J. Phys. A 28, 2981 (1995)

    Google Scholar 

  • I.V. Markov, Crystal Growth For Beginners (World Scientific, 2003), pp. 77–85

  • T.A. Ring, Adv. Coll. Int. Sci. 91, 473 (2001)

    Google Scholar 

  • J.E. Mc Donald, Am. J. Phys. 30, 870 (1962)

    Google Scholar 

  • C. Bréchignac, Ph. Cahuzac, J.P. Roux, D. Pavolini, F. Spiegelmann, J. Chem. Phys. 87, 5694 (1987)

  • O. Knacke, O. Kubaschewski, K. Hesselmann; Thermochemical Properties of Inorganic Substances (Springer-Verlag, 1991)

  • W.C. Wiley, I.H. McLaren, Rev. Sci. Instrum. 26, 1150 (1955)

    Google Scholar 

  • P. Feiden, J. Leygnier, Ph. Cahuzac, C. Bréchignac, Eur. Phys. J. D 43, 49 (2007)

  • R. Alayan, L. Arnaud, M. Broyer, E. Cottancin, J. Lermé, J.L. Vialle, M. Pellarin, Phys. Rev. B 73, 125444 (2006)

    Google Scholar 

  • F. Chirot, S. Zamith, P. Labastie, J.-M. L’Hermite, Rev. Sci. Instrum. 77, 063108 (2006)

    Google Scholar 

  • H. Lihavainen, Y. Viisanen, M. Kulmala, J. Chem. Phys. 114, 10031 (2001)

    Google Scholar 

  • N.W. Ashcroft, V.D. Mermin, in Solid State Physics (Holt Saunder, Tokyo, 1981)

  • U. Zimmermann, N. Malinowski, U. Näher, S. Frank, T.P. Martin, Z. Phys. D 31, 85 (1994)

    Google Scholar 

  • C. Bréchignac, Ph. Cahuzac, F. Carlier, M. de Frutos, J. Leygnier, J. Chem. Phys. 93, 7449 (1990)

  • J. Westergren, H. Grönbeck, S.G. Kim, D. Tománek, J. Chem. Phys. 107, 3071 (1997)

    Google Scholar 

  • J. Borggreen, F. Chandezon, O. Echt, H. Grimley, K. Hansen, P.M. Hansen, C. Ristori, Eur. Phys. J. D 9, 119 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Leygnier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feiden, P., Stehlé, J. & Leygnier, J. Growth of gas phase nanoparticles with an accretion mechanism. Eur. Phys. J. D 50, 53–60 (2008). https://doi.org/10.1140/epjd/e2008-00199-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2008-00199-6

PACS

Navigation