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Abstract. Linear and nonlinear ion acoustic waves in the presence of adiabatically heated ions in magne-
tized electron-positron-ion plasmas are studied. The Sagdeev potential approach is employed to obtain the
energy integral equation in such a mulitcomponent plasma using fluid theory. It is found that electron den-
sity humps are formed in the subsonic region in magnetized electron-positron-ion plasmas. The amplitude
of electron density hump is decreased with the increase of hot ion temperature in electron-positron-ion plas-
mas. However, the increase in positron concentration and obliqueness of the wave increases the amplitude
of nonlinear structure. The increase in positron concentration also reduces the width of the nonlinear struc-
ture in a magnetized multicomponent plasma. The numerical solutions in the form of solitary pulses are
also presented for different plasma cases. The results may be applicable to astrophysical plasma situations,
where magnetized electron-positron-ion plasma with hot ions can exist.

PACS. 52.27.Cm Multicomponent and negative-ion plasmas — 52.25.Xz Magnetized plasmas — 52.35.Fp

Electrostatic waves and oscillations — 52.35.Sb Solitons; BGK modes

1 Introduction

The electron-positron (e-p) plasma is the major con-
stituent in the pulsar magnetosphere [1,2], relativistic jets
that streams from the nuclei of quasars and active galac-
tic nuclei (AGN) [3]. It is believed that around such as-
trophysical e-p plasma situations, the possibility of exis-
tence of ions cannot be ignored. The dynamic scales of
e-p plasma changes drastically with the inclusion of ions,
which are massive particles than same mass particles i.e.,
electrons and positrons. For example, ion acoustic phe-
nomenon can occur in e-p plasmas only with the inclusion
of ions which does not exist in pure e-p (pair) plasmas.
The linear wave spectrum of e-p plasmas also increases
with the inclusion of ions and wide range of frequencies
are available in e-p-i plasmas as compared to two com-
ponent e-p or e-i (electron-ion) plasmas. The possibility
of wave-wave interaction increases and more interesting
nonlinear phenomenon could happen in electron-positron-
ion (e-p-i) plasmas. In most of the astrophysical plas-
mas situations, the kinetic energy of electron (positron)
is much greater than the rest mass energy of the electron
(positron). Therefore, most of the theoretical investiga-
tions of e-p and e-p-i plasmas have been done in the rel-
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ativistic regime [4-6]. However, the study of nonrelativis-
tic astrophysical e-p and e-p-i plasmas is also important
because e-p plasmas can radiate energy very effectively
through cyclotron emission and cool down eventually [7,8].
A number of experiments have been proposed for e-p
plasma studies in the laboratory [7]. The positron can be
used to study the plasma transport mechanism in toka-
maks [9,10]. The positrons can be introduce in tokamaks
by injecting burst of neutral positronium (e*e™) atoms,
which are then ionized by plasmas. The annihilation time
of these positrons in the plasma is long compared to
the typical particle confinement time in tokamaks. There-
fore, study of linear and nonlinear waves in e-p-i plas-
mas becomes interesting to understand some aspects of
dynamic behaviour of both astrophysical and laboratory
multicomponent plasmas. It is believed that very strong
magnetic field ~ 10'2 G can exist near magnetic poles of
the pulsar and plasma number density upto the order of
10" or 10" cm™3 may be present there, which consists
of positrons and electrons with relativistic energies [11].
However there is still possibility of existence of protons
around the atmosphere of pulsar magnetosphere.

The linear and nonlinear ion acoustic waves in unmag-
netized [12-14] and magnetized [15,16] electron-positron-
ion (e-p-i) plasmas have already been studied. Most of
these studies have been done with the assumption of cold
ions in such a multicomponent plasma. Nejoh [14] in-
vestigated ion acoustic solitary waves in a unmagnetized
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e-p-i plasma case with hot ions. The ions are taken to
be dynamic and adiabatically heated while the electrons
and positrons are assumed to be isothermal and follow
Boltzmann distribution. However, most of the e-p-i as-
trophysical plasma situations are magnetized and ions
can also be hot in those multicomponent plasma regions.
Therefore, it will be interesting to study arbitrary ampli-
tude ion acoustic solitary waves in the presence of hot ions
in magnetized e-p-i plasmas. The consistency of fluid the-
ory in the presence of hot and dynamic ions in plasmas
demands ¢; > vy; (where ¢g = \/Te/mi is the ion acous-
tic speed and vy; = \/Tz/mz is the ion thermal speed) and
Landau damping effects are ignored in the model. The
ion acoustic solitary waves in magnetized electron-ion (e-i)
plasmas with cold ions [17,18] as well as adiabatic ions [19]
have also been investigated.

In this manuscript, the propagation of ion acoustic soli-
tary wave in a magnetized homogeneous e-p-i plasma in
the presence of adiabatically heated ions are studied. In
Section 2, the nonlinear set of equations and dispersion re-
lation for low frequency ion acoustic waves are presented.
In Section 3, the energy integral equation is obtained with
Sagdeev potential approach. Some of the possible numeri-
cal solutions have also been presented in Section 4. Finally
in Section 5, the conclusion is presented.

2 Nonlinear set of equations

Let us consider an ideal homogeneous magnetized three
component (e-p-i) plasma. The external magnetic field is
directed along z-axis i.e., Bg = BgZ. The electrons and
positrons are assumed to be isothermal and Boltzmann
distributed while the ions are taken to be dynamic and
adiabatically heated. The phase velocity of the TAW is
assumed much less than the electron (positron) thermal

1
2,
T K Ve, Vip is the

thermal speed of the jth species while j = e, p,i). It is
also assumed that T; < T, for the consistency of the fluid
model. Under these conditions the nonlinear dynamics of
the low frequency TAW in the three component plasma are
governed by the following set of equations.

The ion continuity equation is described as,

P T
velocities i.e., (where v; = ( Jv)

m;

887”:- + V. (n;v;) = 0.

The ion momentum equation is given as,

88‘; +(viV)vi = — 7:, Vo + weiviz —

where pressure tensor is defined as follows,
Py =pud + (pji — pri) 2 2,

here [ is the unit tensor and 2 is the unit vector along

the external magnetic field. The parallel and perpendicu-
lar pressure components are represented as pj; and p;
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respectively. In case of isotropic ion pressure, we have
Pli = Pl (= pi say) and therefore VP; = Vp,. For adia-
batic ion pressure, we have,

()
Pi = Pio )
140
(N+2)

where v = "%, and N is the number of degrees of
freedom. In case of magnetized plasmas, we have N = 3
hence v = g and equilibrium ion pressure is defined as
pio = nioT;.

At low frequency waves, the electrons and positrons
(which have the same mass) are more magnetized as com-
pared to ions because ions are much heavier than elec-
trons (i.e., ion mass is ~ 10% times greater than the
mass of electron or positron). Therefore ion Larmor ra-
dius is much larger than the Larmor radius of electron or
positron. Therefore electrons and positrons are assumed
to move almost parallel to external magnetic field as com-
pared to ions. Under this assumption, the electrons and
positrons in the electrostatic potential perturbations fol-
low the Boltzmann distributions, respectively as,

3)

ep
Ne = Nep€Te,

(4)

and s

— T
np = npoe v .

(5)

The Poisson equation gives,
V3¢ = —dme(n; +ny — ne).

We have assumed E = —V¢ (where ¢ is an electrostatic

eBo

potential) and w.; = ( g

) is the ion gyrofrequency, while

n; is the perturbed density of jth species. Here njq is

the unperturbed density of the species (where j = e, p,i

stands for electrons, positrons and ions, respectively), v;

is the ion fluid velocity, e is the magnitude of the electron

charge and m; is the mass of the ion and T, (T}, T;) denote

the electron (positron, ion) temperatures, respectively.
In equilibrium, we have

(6)

Let us consider the two dimensional perturbation in the
xz-plane, so that V = (9,,0,0,). Then equations (1)
and (2) can be written as,

N30 + Npo = Neo-

Orvig + ('Ui:cax + 'Uizaz) Vixz =

e
- az ciliy — aa: 7 8
; ¢ + weiv y M p ( )
O0rViy + (Vig Oy + 0320,) Viy = —WeiVia, 9)
and
e 1
Orv;, + ('Ui:ca;c + 'Uizaz) Viz = — 6z¢ - 0.p;. (10)
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From Poisson equation, the quasi-neutrality condition is
defined as,

Nng + Np X~ Ne.

(11)

The dispersion relation of ion-acoustic wave in a magne-
tized e-p-i plasma in the presence of hot ions is obtained
by solving equations (3)—(11) algebraically, which yields,

k2 k2
1—p)c? v 2=
( p)cé { (wz _ w2) + wQ}

ct

1 1— 3 7 -
(“‘p){ @ -w2) T w?

30Ck } (12)

In the limit of low frequency waves (w < we;), the above
dispersion relation reduces to,

k2| (1=p) + % (1+ ap)]

[+ ap)+ {0 =p)+ % (1 +ap)}o2h2]

w? =

(13)

where w, k, and k. are frequency and wave numbers along

x and z-direction, respectively. Furthermore ¢; = (T)T;) ’

is the ion-sound speed, p = n";’ is the ratio of positron

n

and electron unperturbed densities, a = % is the ratio of
P
electron and positron temperatures, o = %7' is the ratio

A
Cs

of ion and electron temperatures and ps, = J° is the ion
Larmor radius at electron temperature. In the absence of
hot ionsi.e., o = 0, equation (13) gives the same dispersion
relation as given in reference [16]. However, the limiting
case of two component (e-i) plasma can be obtained from
equation (13) by inserting npo = 0 (i.e., in the absence of
positrons) and o = 0 (i.e., for cold ions case), which gives,

(14 p2k3)

Equation (14) is the same dispersion relation of TAW in
a homogenous magnetized two components e-i plasma,
which has already been studied by Yu et al. [17].

Equation (13) shows that finite ion temperature in-
creases the ion acoustic speed and modifies the ion Larmor
radius effects due to which wave dispersion term changes
in magnetized e-p-i plasmas. A stable solitary structure
is formed when nonlinear wave steepening balances with
the wave dispersion of the ion-acoustic wave due to its ion
Larmor radius effect. The wave dispersion effect is depen-
dent on percentage presence of positrons and adiabatic
ion temperature in magnetized e-p-i plasmas. Therefore it
will be interesting to study the effects of finite ion tem-
perature and positron concentration on the formation of
solitary structures in magnetized e-p-i plasmas.

3 Localized stationary solution

For localized stationary solution, we define transformed
coordinate £ such that,

¢ =Kyx+ K,z — ut, (15)
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where wu is the speed of the localized nonlinear struc-
ture moving with the frame and K,, K, are the direction
cosines along z-axis and z-axis, respectively. Furthermore
K2 + K2 = 1. The limitations of planar stationary solu-
tion is that the system of equations becomes stationary
in the frame of reference and do not depends explicitly
on time. Therefore, the time evolution of single station-
ary pulse (by applying the initial conditions) cannot be
find from this method. The stationary planar solution is
applicable only when an equilibrium is reached between
nonlinear steepening and wave dispersion in the system
and pulse becomes stable [20].

Now assuming that all the dependent variables are
functions of &, the ion continuity given in equation (7)
can be written as,

1
VizOp +0;,0, = M (1 — n> 85. (16)
3
Transforming equations (7)—(10) in terms of co-ordinate
‘¢’ and using equation (16) in equations (8)—(10), we ob-
tain the dimensionless nonlinear differential equation in
terms of ion density n; as follows,

dTLfd (Mg 5 8 L] 2
de | n; | dez \ 2n? 9 M -

K? 00 50K? 10n,
X TR S RN Gl
M2 oe T 3 2 o
_ _u _ ep _ T;
where ¢ = pi, M (Mach number)= *, & = 77, o =
and n; = n"jo (where j = e,i,p).
The quasi-neutrality condition gives,
= (e i), (18)
(1-p) ‘

where v = 1¢ and p = Zzg Equations (4) and (5) gives
density relation between electrons and positrons such that
np = n_ *. It is to be noted here that above equation holds
for (0 < p < 1) in three component (e-p-i) plasmas.
Equation (4) in normalized form can be written as,

& = Inn,. (19)
Using equations (18) and (19) in equation (17) and then
integrating it, we obtain differential equation in terms of
n. as follows,

2
2 | M2(1-p)? +1nn+5a(ne—pne_o‘)3 B
e 2 -
dg? 2(nefpne_o‘)2 2 (1-p)
_ 1 (ne—png®) K2 (ne + png®)
(I-p) | M* (1-p)
K2 /1+7 1 oK?
_M2<1—p)_ M2

(Y e
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= K2 (11— K Inn. a — (n. oo
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where we have used the boundary conditions such that as

2
€] = o0, i — 0, e

Let us define

R [ M?(1-p)?
2

(ne — pne®

— 0, — 0 and n. — 1.

2
_ —Q) 3
2+lnne+50(ne pne?)
2
(1-p)?

Now multiplying by %? on both sides of equation (20) and
after integrating once, we obtain,

1 /9n, 2
2(85) +V(ne) =0,

where the Sagdeev potential is defined as,

(21)

see equation above,

we have used boundary conditions i.e., when [§| — £o0
then 88726 — 0 and n, — 1 to obtain above equation.

Equation (21) is a well-known “energy integral” equation

of an oscillating particle of a unit mass, with velocity (88726 )

at position n. in a nonlinear potential well V(n.).

The Sagdeev potential given in equation (21) gives the
same results as obtained in reference [17], in limiting case
of cold ions (i.e., o = 0) in magnetized e-p-i plasmas. How-
ever, the Sagdeev potential in two component (e-i) magne-
tized plasma can be obtained by substituting, n,o = 0 and
o =0 in equation (21), which reduces to results obtained
by Yu et al. [17]. In the absence of positrons, equation (21)
also reduces to same results as obtained for e-i magnetized
plasmas in the presence of adiabatic ions i.e., o # 0 [19].

The conditions for the existence of localized solu-
tion of equation (21) require that (i) V(1) = V(N) =

gf‘; 0 and (ii) %?2/ o1 < 0 (where the fixed

point at n. = 1 is unstable). Here N is the point where
the curve crosses the n.-axis as shown in Figure 1 and it
represents the maximum amplitude of the solitary wave.

|n6:1:

8
o?K? (ne — pn;o‘) 1 o?K? (ne —pn;o‘) 3
M2(1 - p)3 2 M2(1-p)¥

From second condition, it is found that solitary structures
are formed only in the subsonic region i.e., Mach number
(M < 1).

4 Numerical solutions

In this section, some of the possible numerical solutions of
equation (21) have been presented. The electron temper-
ature and positron temperature are assumed to be same
i.e., « = 1. In Figure 1, the Sagdeev potential curves for
different values of ion temperature have been plotted for
p=20.2 K, =0.8and M = 0.8. It can be seen that the
depth of Sagdeev potential curves decrease with the in-
crease of adiabatic ion temperature in a magnetized e-p-i
plasma. The corresponding electron density humps for the
same parameters as given in Figure 1 are shown in Fig-
ure 2. It is evident that amplitude of the electron density
hump is decreased with the increase of ion temperature
in magnetized e-p-i plasmas. In Figure 3, the increase in
the amplitude of the solitary pulse is shown with the in-
crease in the positron concentration in magnetized e-p-i
plasma with finite hot ion temperature i.e., ¢ = 0.02 and
K, = 0.8 and M = 0.8. It is clear from the figure that
width of the solitary pulse is significantly affected with
positron concentration and solitary pulse get sharpened.
In Figure 4, it is found that amplitude of the solitary pulse
is increased with the increase in the obliqueness of the
wave for ¢ = 0.02 and p = 0.4 and M = 0.6. The po-
tential distribution @ at different values of (npo/ni0) i.e.,
equilibrium density ratio of positrons to ions, have been
plotted using equation (19) as shown in Figure 5 where
npo/nio = p/(1 — p) has been defined. It is clear from
the figure that amplitude of the wave potential increases,
while the width of the nonlinear structure decreases with
the decrease of ions (or increase of positrons) in magne-
tized e-p-i plasmas.
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Fig. 1. The profiles of Sagdeev potential are shown in the
absence and presence of hot ions i.e., ¢ = 0 (solid curve), o =
0.02 (dashed curve) and o = 0.05 (broken curve) for p = 0.2,
M = 0.8 and K, = 0.8 in a magnetized e-p-i plasma.

-15-10-5 0 5 10 15
3

Fig. 2. The corresponding electron density humps are shown
for the same parameters as given in Figure 1.

-1510-56 0 5
g

Fig. 3. The increase in the amplitude of electron density hump
with the change in positron concentration in e-p-i plasmas is
shown for p = 0.1(solid curve) and p = 0.2 (dotted curve) with
oc=20.02, M =0.8 and K. = 0.8.

10 15

5 Conclusion

We have studied the linear and nonlinear ion acoustic
waves in the presence of adiabatically heated ions in mag-
netized e-p-i plasmas. The dispersion relation is also pre-
sented and modification of wave dispersion effects in the
presence of adiabatic ions and different positron concen-
tration are discussed. The Landau damping effects are
ignored and assumption c¢s > vy (where vy is the ion
thermal velocity) remains valid for the consistency of the
fluid model. The arbitrary amplitude ion acoustic soli-
tary waves are studied with finite ion temperature in
magnetized e-p-i plasmas by employing Sagdeev poten-
tial approach. It is found that the presence of hot ions
decreases the wave amplitude significantly but there is a
little change in the width of the nonlinear structure. How-
ever, the positron concentration increases the amplitude
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Fig. 4. The increase in the wave amplitude with the increase
in obliqueness of the wave is shown for K. = 0.8 (solid curve)
and K. = 0.7 (dotted curve) with ¢ = 0.02, p = 0.4 and
M = 0.6 in e-p-i plasmas.

0.25

Fig. 5. The potential distribution @ is shown for different

values of equilibrium density ratio of positrons to ions i.e.,
"0 = 1 at p = 0.1 (shown in solid curve) and *° = } at
i0 n;o

p = 0.2 (shown in dotted curve) for o = 0.02, M = 0.8 and
K. = 0.8 in magnetized e-p-i plasmas.

and decreases the width of the nonlinear structure in mag-
netized in e-p-i plasmas. Therefore, solitary structure gets
sharpened with the increase of positron concentration in a
magnetized multicomponent plasma. It is also found that
the amplitude of the nonlinear structure is increased with
the increase of obliqueness of the wave in e-p-i plasmas.
Our findings are general and may be applicable to astro-
physical plasma situations such as polar cups region of
pulsars and around active galactic nuclei where magne-
tized e-p-i plasma with adiabatic ions can exist.
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