Skip to main content
Log in

Magnetic interactions of cold atoms with anisotropic conductors

  • Highlight Paper
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

We analyze atom-surface magnetic interactions on atom chips where the magnetic trapping potentials are produced by current carrying wires made of electrically anisotropic materials. We discuss a theory for time dependent fluctuations of the magnetic potential, arising from thermal noise originating from the surface. It is shown that using materials with a large electrical anisotropy results in a considerable reduction of heating and decoherence rates of ultra-cold atoms trapped near the surface, of up to several orders of magnitude. The trap loss rate due to spin flips is expected to be significantly reduced upon cooling the surface to low temperatures. In addition, the electrical anisotropy significantly suppresses the amplitude of static spatial potential corrugations due to current scattering within imperfect wires. Also the shape of the corrugation pattern depends on the electrical anisotropy: the preferred angle of the scattered current wave fronts can be varied over a wide range. Materials, fabrication, and experimental issues are discussed, and specific candidate materials are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. Folman, P. Krüger, J. Schmiedmayer, J.H. Denschlag, C. Henkel, Adv. At. Mol. Opt. Phys. 48, 263 (2002)

    Google Scholar 

  • J. Fortágh, C. Zimmermann, Rev. Mod. Phys. 79, 235 (2007)

    Article  ADS  Google Scholar 

  • W. Hänsel, P. Hommelhoff, T.W. Hänsch, J. Reichel, Nature 413, 498 (2001)

    Article  ADS  Google Scholar 

  • S. Aubin, S. Myrskog, M.H.T. Extavour, L.J. LeBlanc, D. McKay, A. Stummer, J.H. Thywissen, Nature Physics 2, 384 (2006)

    Article  ADS  Google Scholar 

  • P. Treutlein, P. Hommelhoff, T. Steinmetz, T.W. Hänsch, J. Reichel, Phys. Rev. Lett. 92, 203005 (2004)

    Article  ADS  Google Scholar 

  • S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdu, J. Schmiedmayer, Nature Physics 2, 710 (2006)

    Article  ADS  Google Scholar 

  • S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, M. Andersson, S. Groth, I. Bar-Joseph, P. Krüger, J. Schmiedmayer, Nature 435, 440 (2005)

    Article  ADS  Google Scholar 

  • Y. Colombe, E. Knyazchyan, O. Morizot, B. Mercier, V. Lorent, H. Perrin, Europhys. Lett. 67, 593 (2004)

    Article  ADS  Google Scholar 

  • Y.J. Wang, D.Z. Anderson, V.M. Bright, E.A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R.A. Saravanan, S.R. Segal, S. Wu, Phys. Rev. Lett. 94, 090405 (2005)

    Article  ADS  Google Scholar 

  • S. Hofferberth, B. Fischer, T. Schumm, J. Schmiedmayer, I. Lesanovsky, Phys. Rev. A 76, 013401 (2007)

    Article  ADS  Google Scholar 

  • A. Haase, B. Hessmo, J. Schmiedmayer, Optics Letters 31, 268 (2006)

    Article  ADS  Google Scholar 

  • S. Wildermuth, S. Hofferberth, I. Lesanovsky, S. Groth, I. Bar-Joseph, P. Krüger, J. Schmiedmayer, Appl. Phys. Lett. 88, 264103 (2006)

    Article  ADS  Google Scholar 

  • T. Kishimoto, H. Hachisu, J. Fujiki, K. Nagato, M. Yasuda, H. Katori, Phys. Rev. Lett. 96, 123001 (2006); K. Nagato, T. Ooi, T. Kishimoto, H. Hachisu, H. Katori, M. Nakao, Precision Engineering 30, 387 (2006)

    Article  ADS  Google Scholar 

  • C. Henkel, P. Krüger, R. Folman, J. Schmiedmayer, Appl. Phys. B 76, 174 (2003)

    Article  ADS  Google Scholar 

  • P. Krüger, L.M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, J. Schmiedmayer, Phys. Rev. A 76, 063621 (2007)

    Article  ADS  Google Scholar 

  • S. Kraft, A. Günther, H. Ott, D. Wharam, C. Zimmermann, J. Fortágh, J. Phys. B 35, L469 (2002)

  • A.E. Leanhardt, Y. Shin, A.P. Chikkatur, D. Kielpinski, W. Ketterle, D.E. Pritchard, Phys. Rev. Lett. 90, 100404 (2003)

    Article  ADS  Google Scholar 

  • D.M. Harber, J.M. McGuirk, J.M. Obrecht, E.A. Cornell, J. Low Temp. Phys. 133, 229 (2003)

    Article  Google Scholar 

  • J. Fortágh, H. Ott, S. Kraft, A. Günther, C. Zimmermann, Phys. Rev. A 66, 041604 (2002)

    Article  ADS  Google Scholar 

  • M.P.A. Jones, C.J. Vale, D. Sahagun, B.V. Hall, E.A. Hinds, Phys. Rev. Lett. 91, 080401 (2003)

    Article  ADS  Google Scholar 

  • Y. Lin, I. Teper, C. Chin, V. Vuletić, Phys. Rev. Lett. 92, 050404 (2004)

    Article  ADS  Google Scholar 

  • B. Zhang, C. Henkel, E. Haller, S. Wildermuth, S. Hofferberth, P. Krüger, J. Schmiedmayer, Eur. Phys. J. D 35, 97 (2005)

    Article  ADS  Google Scholar 

  • V. Dikovsky, Y. Japha, C. Henkel, R. Folman, Eur. Phys. J. D 35, 87 (2005)

    Article  ADS  Google Scholar 

  • S. Scheel, P.K. Rekdal, P.L. Knight, E.A. Hinds, Phys. Rev. A 72, 042901 (2005)

    Article  ADS  Google Scholar 

  • P.K. Rekdal, B.S.K. Skagerstam, U. Hohenester, A. Eiguren, Phys. Rev. Lett. 97, 070401 (2006)

    Article  Google Scholar 

  • S. Scheel, E.A. Hinds, P.L. Knight, arXiv:quant-ph/0610095

  • B.S.K. Skagerstam, U.H. Hohenester, A. Eiguren, P.K. Rekdal, arXiv:quant-ph/0610251

  • P.K. Rekdal, B.S.K. Skagerstam, Phys. Rev. A 75, 022904 (2007)

    Article  ADS  Google Scholar 

  • U. Hohenester, A. Eiguren, S. Scheel, E.A. Hinds, Phys. Rev. A 76, 033618 (2007); B.S.K. Skagerstam, P.K. Rekdal, Phys. Rev. A 76, 052901 (2007)

    Article  ADS  Google Scholar 

  • Indeed, Reichel_clock is the only experiment in which surface induced spin decoherence was measured. However, as the main objective of this experiment was to minimize shifts to an on-chip atomic clock, a specific choice of superposition states and magnetic field value was made, resulting in a surface noise induced decoherence a level weaker than that induced by the technical instabilities of the experiment. In regards to spatial decoherence, no experiment to study the dependence of the decoherence rate on atom-surface distance was performed as of yet

  • T. Schumm, J. Estéve, C. Figl, J.B. Trebbia, C. Aussibal, H. Nguyen, D. Mailly, I. Bouchoule, C.I. Westbrook, A. Aspect, Eur. Phys. J. D 32, 171 (2005)

    Article  ADS  Google Scholar 

  • J. Estéve, C. Aussibal, T. Schumm, C. Figl, D. Mailly, I. Bouchoule, C.I. Westbrook, A. Aspect, Phys. Rev. A 70, 043629 (2004)

    Article  ADS  Google Scholar 

  • D.W. Wang, M.D. Lukin, E. Demler, Phys. Rev. Lett. 92, 076802 (2004)

    Article  ADS  Google Scholar 

  • S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, J. Schmiedmayer, Science 319, 1226 (2008)

    Article  ADS  Google Scholar 

  • J.B. Trebbia, C.L. Garrido Alzar, R. Cornelussen, C.I. Westbrook, I. Bouchoule, Phys. Rev. Lett. 98, 263201 (2007)

    Article  ADS  Google Scholar 

  • Y. Japha, O. Entin-Wohlman, T. David, R. Salem, S. Aigner, J. Schmiedmayer, R. Folman, Phys. Rev. B 77, 201407(R) (2008)

    Article  ADS  Google Scholar 

  • C. Henkel, S. Pötting, Appl. Phys. B 72, 73 (2001)

    ADS  Google Scholar 

  • C. Henkel, S. Pötting, M. Wilkens, Appl. Phys. B 69, 379 (1999)

    Article  ADS  Google Scholar 

  • R. Fermani, S. Scheel, P.L. Knight, Phys. Rev. A 73, 032902 (2006)

    Article  ADS  Google Scholar 

  • C. Henkel and B. Horovitz, arXiv:0709.1242v1/quant-ph (2008)

  • B. Zhang, C. Henkel, J. Appl. Phys. 102, 084907 (2007)

    Article  ADS  Google Scholar 

  • L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, 3rd edn. (Pergamon, 1977)

  • L. Mandel, E. Wolf, Optical coherence and quantum optics (Cambridge, 1995)

  • It should be noted that considering the noise only at the trap center (as usually done) may not be sufficient, as by doing so one neglects the fact that the trap is commonly spatially inhomogeneous (e.g. harmonic). The atoms are distributed in the trap with a certain density profile, and move as they have finite temperature. Taking this into account introduces corrections to the theory which in some cases may be important. However, for the purposes of this study this is not crucial, and we will address this issue separately

  • S.M. Rytov, Y.A. Kravtsov, V.I. Tatarskii, Principles of Statistical Radiophysics III: Elements of Random Fields (Springer, Berlin, 1989)

  • E.M. Lifshitz, Sov. Phys. JETP 2, 73 (1956); E.M. Lifshitz, J. Exp. Theor. Phys. USSR 29, 94 (1955)

    MathSciNet  Google Scholar 

  • B.A. Sanborn, P.B. Allen, D.A. Papaconstantinopoulos, Phys. Rev. B 40, 6037 (1989)

    Article  ADS  Google Scholar 

  • National Physical Laboratory Kaye and Laby Tables of Physical and Chemical constants, website http://www.kayelaby.npl.co.uk/

  • S.L. Bud'ko, P.C. Canfield, C.H. Mielke, A.H. Lacerda, Phys. Rev. B 57, 13624 (1998)

    Article  ADS  Google Scholar 

  • D.G. Schlom, S.B. Knapp, S. Wozniak, L.-N. Zou, J. Park, Y. Liu, M.E. Hawley, G.W. Brown, A. Dabkowski, H.A. Dabkowska, R. Uecker, P. Reiche, Supercond. Sci. Technol. 10, 891 (1997)

    Article  ADS  Google Scholar 

  • A.W. Tyler, A.P. Mackenzie, S. Nishizaki, Y. Maeno, Phys. Rev. B 58, R10107 (1998)

  • T. Katsufuji, M. Kasai, Y. Tokura, Phys. Rev. Lett. 76, 126 (1995)

    Article  ADS  Google Scholar 

  • R.J. Cava, B. Batlogg, K. Kiyono, H. Takagi, J.J. Krajewski, W.F. Peck Jr., L.W. Rupp Jr., C.H. Chen, Phys. Rev. B 49, 11890 (1994)

    Article  ADS  Google Scholar 

  • S.I. Ikeda, Y. Maeno, S. Nakatsuji, M. Kosaka, Y. Owatoko, Phys. Rev. B 62, R6089 (2000)

  • I. Terasaki, Y. Sasago, K. Uchinokura, Phys. Rev. B 56, R12685 (1997)

  • Y. Furubayashi, T. Terashima, I. Chong, M. Takano, Phys. Rev. B 60, R3720 (1999)

  • N. Motoyama, T. Osafune, T. Kakeshita, H. Eisaki, S. Uchida, Phys. Rev. B 55, R3386 (1997)

  • V.N. Zavaritsky, A.S. Alexandrov, Phys. Rev. B 71, 012502 (2005)

    Article  ADS  Google Scholar 

  • K. Takenaka, K. Mizuhashi, H. Takagi, S. Uchida, Phys. Rev. B 50, 6534 (1994)

    Article  ADS  Google Scholar 

  • Y. Nakamura, S. Uchida, Phys. Rev. B 47, 8369 (1993)

    Article  ADS  Google Scholar 

  • L. Edman, B. Sundqvist, E. McRae, E. Litvin-Staszewska, Phys. Rev. B 57, 6227 (1998)

    Article  ADS  Google Scholar 

  • Z. Wang, F. Xu., C. Lu, H. Zhang, Q. Xu, J. Zu, arXiv:0801.3298

  • Z.M. Wang, Q.Y. Xu, G. Ni, Y.W. Du, Phys. Lett. A 314, 328 (2003)

    Article  ADS  Google Scholar 

  • HOPG is usually obtained commercially. Typical details could be found for example through SPI supplies (SPI supplies, www.2spi.com) or Advanced Ceramics (www.advceramics.com).

  • C.A. Kuntscher, D. van der Marel, M. Dressel, F. Lichtenberg, J. Mannhart, Phys. Rev. B 67, 035105 (2003)

    Article  ADS  Google Scholar 

  • C.A. Kuntscher, S. Schuppler, P. Haas, B. Gorshunov, M. Dressel, M. Grioni, F. Lichtenberg, A. Herrnberger, F. Mayr, J. Mannhart, Phys. Rev. Lett. 89, 236403 (2002); J.E. Weber, C. Kegler, N. Bütgen, H.-A. Krug von Nidda, A. Loidl, F. Lichtenberg, Phys. Rev. B 64, 235414 (2001)

    Article  ADS  Google Scholar 

  • C.D.J. Sinclair, E.A. Curtis, I. Llorente-Garcia, J.A. Retter, B.V. Hall, S. Eriksson, B.E. Sauer, E.A. Hinds, Phys. Rev. A 72, 031603(R) (2005); C.D.J. Sinclair, J.A. Retter, E.A. Curtis, B.V. Hall, I. Llorente-Garcia, S. Eriksson, B.E. Sauer, E.A. Hinds, Eur. Phys. J. D 35, 105 (2005)

    Article  ADS  Google Scholar 

  • W.A.M. Aarnink, R.P.J. IJsselsteijn, J. Gao, A. van Silfhout, H. Rogalla, Phys. Rev. B 45, 13002 (1992)

    Article  ADS  Google Scholar 

  • F. Lichtenberg, A. Herrnberger, K. Weidenmann, J. Mannhart, Prog. Solid State Chem. 29, 1 (2001)

    Article  Google Scholar 

  • C.A. Kuntscher, S. Schuppler, P. Haas, B. Gorshunov, M. Dressel, M. Grioni, F. Lichtenberg, Phys. Rev. B 70, 245123 (2004)

    Article  ADS  Google Scholar 

  • F. Lichtenberg, A. Herrnberger, K. Weidenmann, Submitted to Prog. Solid State Chem. (2007)

  • F. Lichtenberg, private communication.

  • S. Groth, P. Krüger, S. Wildermuth, R. Folman, T. Fernholz, D. Mahalu, I. Bar-Joseph, J. Schmiedmayer, Appl. Phys. Lett. 85, 14 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. David.

Rights and permissions

Reprints and permissions

About this article

Cite this article

David, T., Japha, Y., Dikovsky, V. et al. Magnetic interactions of cold atoms with anisotropic conductors. Eur. Phys. J. D 48, 321–332 (2008). https://doi.org/10.1140/epjd/e2008-00119-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2008-00119-x

PACS.

Navigation