Skip to main content

Advertisement

Log in

Learning to design resistance proof drugs from folding

  • Bio Macromolecules in Action
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Learning how proteins fold will hardly have any impact on the way conventional — active site centered — drugs are designed. On the other hand, this knowledge is proving instrumental in defining a new paradigm for the identification of drugs against any target protein: folding inhibition. Targeting folding renders drugs less susceptible to spontaneous genetic mutations that in many cases, notably in connection with retroviruses like the Human Immunodeficiency Virus (HIV), can abrogate drug effect. The progress which has taken place during the last years to understand which are the sequences of amino acids which code for a protein, and how to read from these sequences the associated three-dimensional, biologically active, native structure, constitutes the main subject of the present paper. From this narrative the idea of folding inhibitors emerges both naturally and, to some extent, inescapably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • F. Sanger, Adv. Protein Chem. VII, 1 (1952)

  • J. Monod, Chance and necessity (Vintage, New York, 1972)

  • J.M. Coffin, Science 267, 483 (1995)

  • C. Levinthal, J. Chim. Phys. 65, 44 (1968)

    Google Scholar 

  • I.N. Berezovsky, E.N. Trifonov, J. Biomol. Struct. Dyn. 20, 5 (2002)

    Google Scholar 

  • J. Bryngelson, P. Wolynes, Proc. Natl. Acad. Sci. USA 84, 7524 (1987)

    Google Scholar 

  • V.S. Pande, A.Y. Grosberg, T. Tanaka, Rev. Mod. Phys. 72, 259 (2000)

    Google Scholar 

  • J. Onuchic, N. Socci, Z. Luthey-Schulten, P. Wolynes, Fold. Design 1, 441 (1996)

    Google Scholar 

  • J. Onuchic, P. Wolynes, Curr. Opin. Struct. Biol. 14, 70 (2004)

    Google Scholar 

  • P. Wolynes, Phil. Trans. R. Soc. A 363, 453 (2005)

    Google Scholar 

  • E.I. Shakhnovich, Phys. Rev. Lett. 72, 3907 (1994)

    Google Scholar 

  • J.U. Bowie, R. Luthy, D. Eisenberg, Science 253, 164 (1991)

    Google Scholar 

  • V.I. Abkevich, A.M. Gutin, E. Shakhnovich, Biochemistry 33, 10026 (1994)

    Google Scholar 

  • G. Tiana, R. Broglia, H. Roman, E. Vigezzi, E. Shakhnovich, J. Chem. Phys. 108, 757 (1998)

    Google Scholar 

  • L. Sutto, G. Tiana, R. Broglia, Protein Sci. 15, 1638 (2006)

    Google Scholar 

  • R. Broglia, G. Tiana, J. Chem. Phys. 114, 7267 (2001)

    Google Scholar 

  • E. Shakhnovich, V. Abkevich, O. Ptitsyn, Nature 379, 96 (1996)

    Google Scholar 

  • L. Itzhaki, D. Otzen, A. Fersht, J. Mol. Biol. 254, 260 (1995)

    Google Scholar 

  • H. Berendsen, D. van der Spoel, R. van Drunen, Comput. Phys. Commun. 91, 43 (1995)

    Google Scholar 

  • E.I. Shakhnovich, Nat. Struct. Biol. 6, 99 (1999)

    Google Scholar 

  • R. Broglia, G. Tiana, S. Pasquali, H. Roman, E. Vigezzi, Proc. Natl. Acad. Sci. USA 95, 12930 (1998)

    Google Scholar 

  • R. Broglia, G. Tiana, Proteins 45, 421 (2001)

    Google Scholar 

  • C. Camilloni, D. Provasi, G. Tiana, R.A. Broglia, to be published

  • V. Grantcharova, D. Riddle, J. Santiago, D. Baker, Nat. Struct. Biol. 5, 714 (1998)

    Google Scholar 

  • J.C. Martinez, M.T. Pisabarro, L. Serrano, Nat. Struct. Biol. 5, 721 (1998)

    Google Scholar 

  • F. Khan, J.I. Chuang, S. Gianni, A. Fersht, J. Mol. Biol. 333, 169 (2003)

    Google Scholar 

  • A.R. Fersht, Curr. Opin. Struct. Biol. 5, 79 (1994)

  • A. Fersht, Structure and Mechanism in Protein Science (Freeman, New York, 1999)

  • K.A. Dill, D. Shortle, Annu. Rev. Biochem. 60, 795 (1991)

    Google Scholar 

  • D. Shortle, FASEB J 10, 27 (1996)

  • B.E. Bowler, Mol. Biosyst. 3, 88 (2007)

    Google Scholar 

  • Q. Yi, M. Scalley-Kim, E. Alm, D. Bajer, J. Mol. Biol. 299, 1341 (2000)

    Google Scholar 

  • Y. Mok et al., J. Mol. Biol. 289, 619 (1999)

  • O. Zhang, J. Forman-Kay, Biochemistry 4, 6784 (1997)

  • A. Navon, V. Ittah, P. Landsman, H. Scheraga, E. Haas, Biochemistry 40, 105 (2001)

    Google Scholar 

  • R.A. Broglia, G. Tiana, H.E. Roman, E. Vigezzi, E. Shakhnovich, Phys. Rev. Lett. 82, 4227 (1999)

    Google Scholar 

  • R.A. Goldstein, Z.A. Luthey-Schulten, P.G. Wolynes, Proc. Natl. Acad. Sci. USA 89, 4918 (1992)

    Google Scholar 

  • A.V. Finkelstein, A. Gutin, A. Badretdinov, Proteins Struct. Funct. Gen. 23, 142 (1995)

    Google Scholar 

  • H. Li, R. Helling, C. Tang, N. Wingreen, Science 273, 666 (1996)

    Google Scholar 

  • M. Kardar, Science 273, 610 (1996)

  • L. Sutto, Ph.D. thesis, Università degli Studi di Milano (2007)

  • R. Broglia, G. Tiana, R. Berera, J. Chem. Phys. 118, 4754 (2003)

    Google Scholar 

  • C. Cecconi, E. Shank, C. Bustamante, S. Marqusee, Science 309, 2057 (2005)

  • C. Camilloni, D. Provasi, G. Tiana, R.A. Broglia, Proteins, DOI: 10.1002/prot.21852

  • M. Bonomi, F. Gervasio, G. Tiana, D. Provasi, R.A. Broglia, M. Parrinello, Biophys. J. 93, 8 (2007)

    Google Scholar 

  • D. Xu, C. Tsai, R. Nussinov, Protein Sci. 7, 533 (1998)

    Google Scholar 

  • G. Tiana, R. Broglia, Proteins 49, 82 (2002)

    Google Scholar 

  • G. Papoian, P. Wolynes, Biopolymers 68, 333 (2007)

    Google Scholar 

  • A. Caflisch, Trends Biotechnol. 21, 423 (2003)

    Google Scholar 

  • D. Xie, S. Gulnik, E. Gustchina, B. Yu, W. Shao, W. Qoroneh, A. Nathan, J. Erickson, Protein Sci. 8, 1702 (1999)

    Google Scholar 

  • R. Ishima, R. Ghirlando, J. Todzser, A. Gronenborn, D. Torchia, J. Louis, J. Biol. Chem. 276, 49110 (2001)

    Google Scholar 

  • J. Louis, R. Ishima, I. Nesheiwat, L. Pannell, S. Lynch, D. Torchia, A. Gronenborn, J. Biol. Chem. 278, 6085 (2003)

    Google Scholar 

  • R. Broglia, G. Tiana, L. Sutto, D. Provasi, F. Simona, Protein Sci. 14, 2668 (2005)

    Google Scholar 

  • R. Broglia, G. Tiana, L. Sutto, D. Provasi, F. Simona, La Rivista del Nuovo Cimento 29, 1 (2006)

    Google Scholar 

  • R. Broglia, D. Provasi, F. Vasile, G. Ottolina, R. Longhi, G. Tiana, Proteins 62, 928 (2006)

  • S. Rusconi et al., Proceedings of the International School of Physics “Enrico Fermi”, Course CLXV on “Protein folding and drug design”, edited by R.A. Broglia, L. Serrano, G. Tianna (IOS Press, Amsterdam, 2007) p. 293

  • R. Broglia, G. Tiana, L. Sutto, D. Provasi, V. Perelli, Proteins 67, 469 (2007)

  • F. Caldarini, M. Vasile, D. Provasi, R. Longhi, G. Tiana, R. Broglia, to be published

  • G. Tiana, R. Broglia, E. Shakhnovich, Proteins 39, 244 (2000)

    Google Scholar 

  • G. Tiana, L. Sutto, R. Broglia, Phys. A 380, 241 (2007)

    Google Scholar 

  • B. Derrida, Phys. Rev. B 24, 2613 (1981)

    Google Scholar 

  • P. Flory, J. Chem. Phys. 17, 303 (1949)

    Google Scholar 

  • H. Orland, C. Itzykson, C. De Domicis, J. Phys. Lett. 46, 353 (1985)

    Google Scholar 

  • D. Goodsell, Trends Biochem. Sci. 16, 203 (1991)

    Google Scholar 

  • A. Fulton, Cell 30, 345 (1982)

  • D.B. Wetlaufer, Proc. Natl. Acad. Sci. USA 70, 697 (1973)

    Google Scholar 

  • D.B. Wetlaufer, Adv. Protein Chem. 34, 61 (1981)

  • G. Schulz, R. Schirmer, Principles of Protein Structure (Springer, Heidelberg, 1979)

  • G. Schulz, Curr. Opin. Struct. Biol. 1, 883 (1991)

    Google Scholar 

  • K. Dill, Biochem. 24, 1501 (1985)

  • J. Richardson, Adv. Protein Chem. 34, 167 (1981)

  • J. Janin, S. Wodak, Prog. Biophys. Mol. Biol. 42, 21 (1983)

    Google Scholar 

  • D. Goodsell, A. Olson, Trends Biochem. Sci. 18, 65 (1993)

    Google Scholar 

  • H. Maity, M. Maity, M. Krishna, L. Mayne, S. Englander, Proc. Natl. Acad. Sci. USA 102, 4741 (2005)

    Google Scholar 

  • P. Bork, Curr. Opin. Struct. Biol. 2, 413 1992

    Google Scholar 

  • R. Doolittle, Protein Sci. 1, 191 (1992)

  • A.L. Berman, E. Kolker, E.N. Trifonov, Proc. Natl. Acad. Sci. USA 91, 4044 (1994)

    Google Scholar 

  • D. Chandler, Nature 417, 491 (2002)

  • W. Kauzmann, Adv. Prot. Chem. 14, 1 (1959)

  • F. Stillinger, J. Solut. Chem. 2, 141 (1973)

    Google Scholar 

  • K. Lum, D. Chandler, J. Weeks, J. Phys. Chem. B 103, 4570 (1999)

    Google Scholar 

  • T. Creighton, Proteins: Structures and Molecular Properties (W.H. Freeman, New York, 1993)

  • G. Tiana, R. Broglia, J. Chem. Phys. 108, 2503 (2001)

    Google Scholar 

  • C. Sander, R. Schneider, Proteins Struct. Funct. Gen. 9, 56 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broglia, R. Learning to design resistance proof drugs from folding. Eur. Phys. J. D 51, 137–151 (2009). https://doi.org/10.1140/epjd/e2008-00064-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2008-00064-8

PACS

Navigation