Skip to main content
Log in

Continuum modelling of spherical and spheroidal carbon onions

  • Clusters and Nanostructures
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

Carbon nanostructures are of considerable interest owing to their unique mechanical and electronic properties. Experimentally, a wide variety of different shapes are obtained, including both spherical and spheroidal carbon onions. A spheroid is an ellipsoid with two major axes equal and the term onion refers to a multi-layered composite structure. Assuming structures of either concentric spherical or ellipsoidal fullerenes comprising n layers, this paper examines the interaction energy between adjacent shells for both spherical and spheroidal carbon onions. The Lennard-Jones potential together with the continuum approximation is employed to determine the equilibrium spacing between two adjacent shells. We also determine analytical formulae for the potential energy which may be expressed either in terms of hypergeometric or Legendre functions. We find that the equilibrium spacing between shells decreases for shells further out from the inner core owing to the decreasing curvature of the outer shells of a concentric structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, California, 1995)

  • H. Terrones, M. Terrones, New J. Phys. 5, 126.1 (2003)

    Article  ADS  Google Scholar 

  • S. Weber, Crystallography Picture Book (http://www.jcrystal.com/steffenweber/pb/)

  • Q. Zheng, Q. Jiang, Phys. Rev. Lett. 88, 045503 (2002)

    Article  ADS  Google Scholar 

  • Q. Zheng, J.Z. Liu, Q. Jiang, Phys. Rev. B 65, 245409 (2002)

    Article  ADS  Google Scholar 

  • H.B. Peng, C.W. Chang, S. Aloni, T.D. Yuzvinsky, A. Zettl, Phys. Rev. Lett. 97, 087203 (2006)

    Article  ADS  Google Scholar 

  • Z. Slanina, P. Pulay, S. Nagase, J. Chem. Theory Comput. 2, 782 (2006)

    Article  Google Scholar 

  • O.E. Glukhova, A.I. Zhbanov, A.G. Rezkov, Phys. Solid State 47, 390 (2005)

    Article  Google Scholar 

  • J.P. Lu, W. Yang, Phys. Rev. B 49, 11421 (1994)

    Article  ADS  Google Scholar 

  • H. Guérin, J. Phys. B: At. Mol. Opt. Phys. 30, L481 (1997)

  • M. Yoshida, E. Osawa, Full. Sci. Technol. 1, 55 (1993)

    Google Scholar 

  • H. Kitahara, T. Oku, K. Suganuma, Eur. Phys. J. D 16, 361 (2001)

    Article  ADS  Google Scholar 

  • I. Narita, T. Oku, K. Suganumn, K. Hiraga, E. Aoyagi, J. Mater. Chem. 11, 1761 (2001)

    Article  Google Scholar 

  • S. Iglesias-Groth, J. Breton, C. Girardet, Chem. Phys. Lett. 265, 351 (1997)

    Article  Google Scholar 

  • L.A. Girifalco, M. Hodak, R.S. Lee, Phys. Rev. B 62, 13104 (2000)

    Article  ADS  Google Scholar 

  • M. Rieth, Nano-Engineering in Science and Technology: An Introduction to the World of Nano-Design (World Scientific Publishing Co. Pte. Ltd., Singapore, 2003)

  • P.J.F. Harris, Carbon Nanotubes and Related Structures (Cambridge University Press, England, 1999)

  • H.W. Kroto, K. McKay, Nature 331, 328 (1988)

    Article  ADS  Google Scholar 

  • S. Itoh, P. Ordejón, D.A. Drabold, R.M. Martin, Phys. Rev. B 53, 2132 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  • B.I. Dunlap, R. Zope, Efficient quantum-chemical geometry optimization and the structure of large icosahedral fullerenes (http://arxiv.org/abs/cond-mat/0603225)

  • M. Terrones, G. Terrones, H. Terrones, Struct. Chem. 13, 373 (2002)

    Article  Google Scholar 

  • F. Banhart, P.M. Agayan, Nature 382, 433 (1996)

    Article  ADS  Google Scholar 

  • I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, San Diego, 2000)

  • F.D. Colavecchia, G. Gasaneo, J.E. Miraglia, Comput. Phys. Comm. 138, 29 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions (McGraw-Hill, New York, 1953)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Baowan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baowan, D., Thamwattana, N. & Hill, J. Continuum modelling of spherical and spheroidal carbon onions. Eur. Phys. J. D 44, 117–123 (2007). https://doi.org/10.1140/epjd/e2007-00159-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2007-00159-8

PACS.

Navigation