Skip to main content
Log in

Cubic and hexagonal symmetries in LiCl nanoclusters

  • Clusters and Nanostructures
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

Cubic and hexagonal symmetries are observed in molecular dynamics simulations of lithium chloride unconstrained nanoclusters, using the Born-Mayer-Huggins (BMH) potential model. Phase changes between the two solid phases, and solid-liquid coexistences, are studied for LiCl clusters with a number of ions ranging from 1000 to 5292. A stability analysis of the clusters and bulk systems, at 0K, is presented, using the BMH and the Michielsen-Woerlee-Graaf (MWG) potential models. The cubic structure from the BMH model is slightly more stable than the hexagonal one for cluster sizes between 1000 and ~10 000 ions. For higher cluster sizes and bulk LiCl the opposite is true. Moreover, at 0K, the bulk cubic phase from the MWG potential is significantly more stable than the hexagonal one. Thus, the BMH potential model seems unrealistic for large clusters and the bulk as far as a comparison with experiment is concerned. Finally, a fairly good correlation of the simulation results is obtained by means of a theoretical model recently reported by us.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C.L. Briant, J.J. Burton, J. Chem. Phys. 63, 2045 (1975)

    Article  ADS  Google Scholar 

  • N. Quirke, P. Sheng, Chem. Phys. Lett. 110, 63 (1984)

    Article  ADS  Google Scholar 

  • J.E. Adams, R.M. Stratt, J. Chem. Phys. 93, 1358 (1990)

    Article  ADS  Google Scholar 

  • D.J. Wales, R.S. Berry, J. Chem. Phys. 92, 4295 (1990)

    Google Scholar 

  • W. Polak, Eur. Phys. J. D 40, 231 (2006)

    Article  ADS  Google Scholar 

  • M. Amini, D. Fincham, R.W. Hockney, J. Phys. C: Solid St. Phys. 12, 4707 (1979)

    Article  ADS  Google Scholar 

  • M. Amini, D. Fincham, R.W. Hockney, J. Phys. C: Solid St. Phys. 13, L221 (1980)

  • J.P. Rose, R.S. Berry, J. Chem. Phys. 96, 517 (1992)

    Article  ADS  Google Scholar 

  • J.P. Rose, R.S. Berry, J. Chem. Phys. 98, 3246 (1993)

    Article  ADS  Google Scholar 

  • J.P. Rose, R.S. Berry, J. Chem. Phys. 98, 3262 (1993)

    Article  ADS  Google Scholar 

  • F.M.S.S. Fernandes, L.A.T.P. Neves, Am. Inst. Phys. Conf. Proc. 330, 313 (1995)

    ADS  Google Scholar 

  • A. Aguado, A. Ayuela, J.M. Lopez, J.A. Alonso, Phys. Rev. B 56, 15353 (1997)

    Article  ADS  Google Scholar 

  • A. Aguado, L.E. González, J.M. López, J. Phys. Chem. B 108, 11722 (2004)

    Article  Google Scholar 

  • O.H. Nielsen, J.P. Sethna, P. Stoltze, K.W. Jacobsen, J.K. Norskov, Eur. Phys. Lett. 26, 557 (1994)

    ADS  Google Scholar 

  • D.H.E. Gross, M.E. Madjet, Z. Phys. B 104, 541 (1997)

    Article  ADS  Google Scholar 

  • C. Guet, X. Biquard, P. Blaise, S.A. Blundell, M. Gross, B.A. Huber, D. Jalabert, M. Maurel, L. Plagne, J.C. Rocco, Z. Phys. D 40, (1997)

  • Y.G. Chushak, L.S. Bartell, J. Phys. Chem. B 105, 11605 (2001)

    Article  Google Scholar 

  • S. Huang, P.B. Balbuena, J. Phys. Chem. B 106, 7225 (2002)

    Article  Google Scholar 

  • L. Rangsu, L. Jiyong, D. Kejun, Z. Caixing, L. Hairong, Mater. Sci. Eng. B 94, 141 (2002)

    Article  Google Scholar 

  • D. Schebarchov, S.C. Hendy, J. Chem. Phys. 123 (2005)

  • M. Bixon, J. Jortner, J. Chem. Phys. 91, 1631 (1989)

    Article  ADS  Google Scholar 

  • D.J. Wales, R.S. Berry, Phys. Rev. Lett. 73, 2875 (1994)

    Article  ADS  Google Scholar 

  • C.L. Cleveland, U. Landman, W.D. Luedtke, J. Phys. Chem. 98, 6272 (1994)

    Article  Google Scholar 

  • D.H.E. Gross, E.V. Votyakov, Eur. Phys. J. B 15, 115 (2000)

    ADS  Google Scholar 

  • R.S. Berry, B.M. Smirnov, J. Chem. Phys. 114, 6816 (2001)

    Article  ADS  Google Scholar 

  • D.H.E. Gross, Nuc. Phys. A 681, 366C (2001)

    Article  MATH  ADS  Google Scholar 

  • O. Mulken, H. Stamerjohanns, P. Borrmann, Phys. Rev. E 64 (2001)

  • D.H.E. Gross, Phys. Chem. Chem. Phys. 4, 863 (2002)

    Article  Google Scholar 

  • P.C.R. Rodrigues, F.M.S.S. Fernandes, Eur. Phys. J. D 41, 113 (2007)

    Article  ADS  Google Scholar 

  • X. Li, J. Huang, J. Solid State Chem. 176, 234 (2003)

    Article  ADS  Google Scholar 

  • D. Schebarchov, S.C. Hendy, Phys. Rev. Lett. 95 (2005)

  • D. Schebarchov, S.C. Hendy, Phys. Rev. B 73, (2006)

  • Y. Sato-Sorensen, J. Geophys. Res. 88, 3543 (1983)

    Article  ADS  Google Scholar 

  • N.V.K. Prabhakar, R.K. Singh, N.K. Gaur, N.N. Sharma, J. Phys. Cond. Mat. 2, 3445 (1990)

    Article  ADS  Google Scholar 

  • H.R. Yazar, Turk J. Phys. 27, 195 (2003)

    ADS  Google Scholar 

  • L.V. Woodcock, Corresponding states theory for the fusion of ionic crystals, in Proceedings of the Royal Society of London Series A-Mathematical Physical and Engeneering Sciences 348 (1653) (1976), pp. 187–202

  • N.C. Pyper, J. Chem. Phys. 118, 2308 (2003)

    Article  ADS  Google Scholar 

  • P.C.R. Rodrigues, F.M.S.S. Fernandes, Int. J. Quantum Chem. 84, 169 (2001)

    Article  Google Scholar 

  • T. Croteau, G.N. Patey, J. Chem. Phys. 124, 244506 (2006)

    Article  ADS  Google Scholar 

  • R.O. Watts, I.J. McGee, Liquid State Chemical Physics (John Wiley and Sons, 1976), pp. 307–312

  • J. Michielsen, P. Woerlee, F.V.D. Graaf, J.A.A. Ketelaar, J. Chem. Soc., Faraday Trans. II 71, 1730 (1975)

    Article  Google Scholar 

  • L.V. Woodcock, Chem. Phys. Lett. 10, 257 (1970)

    Article  ADS  Google Scholar 

  • L.V. Woodcock, K. Singer, Trans. Faraday Soc. 67, 12 (1971)

    Article  Google Scholar 

  • M.J.L. Sangster, M. Dixon, Adv. Phys. 25, 247 (1976)

    Article  ADS  Google Scholar 

  • F.J.A.L. Cruz, J.N.C. Lopes, J.C.G. Calado, M.E.M. da Piedade, J. Phys. Chem. B 109, 24473 (2005)

    Article  Google Scholar 

  • F.J.A.L. Cruz, J.N.C. Lopes, J.C.G. Calado, J. Phys. Chem. B 110, 4387 (2006)

    Article  Google Scholar 

  • N. Galamba, C.A.N. de Castro, J.F. Ely, J. Chem. Phys. B 108, 3658 (2004)

    Article  Google Scholar 

  • N. Galamba, C.A.N. de Castro, J.F. Ely, J. Chem. Phys. 120, 8676 (2004)

    Article  ADS  Google Scholar 

  • P.C.R. Rodrigues, F.M.S.S. Fernandes, J. Chem. Phys. 126, 024503 (2007)

    Article  ADS  Google Scholar 

  • M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Claredon Press, Oxford, UK, 1987)

  • K. Huang, Statistical Mechanics (John Wiley and Sons, New York, 1987)

  • P.C.R. Rodrigues, F.M.S.S. Fernandes, Eur. Phys. J. D 40, 115 (2006)

    Article  ADS  Google Scholar 

  • M. Antoni, S. Ruffo, A. Torcini, Phys. Rev. E 66, 025103(R) (2002)

    Article  ADS  Google Scholar 

  • P.C.R. Rodrigues, F.M.S.S. Fernandes, unpublished re- sults (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M.S. Silva Fernandes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, P., Silva Fernandes, F. Cubic and hexagonal symmetries in LiCl nanoclusters. Eur. Phys. J. D 44, 109–116 (2007). https://doi.org/10.1140/epjd/e2007-00150-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2007-00150-5

PACS.

Navigation