Skip to main content
Log in

Changing the fragmentation pattern of molecules in helium nanodroplets by co-embedding with water

  • Helium Clusters and Spectroscopy
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

Individual amino acid molecules embedded in helium nanodroplets fragment extensively when the beam is ionized by electron bombardment. However, we find that when glycine and tryptophan are picked up right after, or right before, a small amount of water, the mass spectra become significantly altered. For glycine, the detected ions consist almost entirely of intact protonated amino acids, with or without a few water molecules attached. In other words, the presence of water exerts a striking “buffering” effect on the ionization-induced fragmentation. For tryptophan the effect is weaker but also present. In both cases, the hydroxyl group lost upon ionization overwhelmingly comes from the water partner (in strong contrast to the situation observed when amino acids are picked up by neat water clusters). A complementary experiment involving DCl molecules co-embedded with water shows that in this case Cl and/or DCl invariably leave the droplet upon ionization. The observed patterns may be steered by the analytes' dipole moments or by solvation effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.P. Toennies, A.F. Vilesov, Angew. Chem. Intern. Ed. 43, 2622 (2004)

    Article  Google Scholar 

  • F. Stienkemeier, K.K. Lehmann, J. Phys. B: At. Mol. Opt. Phys. 39, R127 (2006)

  • A. Scheidemann, B. Schilling, J.P. Toennies, J. Phys. Chem. 97, 2128 (1993)

    Article  Google Scholar 

  • B.E. Callicoatt, D.D. Mar, V.A. Apkarian, K.C. Janda, J. Chem. Phys. 105, 7872 (1996)

    Article  ADS  Google Scholar 

  • M. Fárník, J.P. Toennies, J. Chem. Phys. 122, 014307 (2005)

    Article  Google Scholar 

  • S. Yang, S.M. Brereton, M.D. Wheeler, A.M. Ellis, Phys. Chem. Chem. Phys. 7, 4082 (2005)

    Article  Google Scholar 

  • F. Huisken, O. Werhahn, A.Yu. Ivanov, S.A. Krasnokutski, J. Chem. Phys. 111, 2978 (1999)

    Article  ADS  Google Scholar 

  • A. Lindinger, J.P. Toennies, A.F. Vilesov, J. Chem. Phys. 110, 1429 (1999)

    Article  ADS  Google Scholar 

  • NIST Mass Spec Data Center, “Mass Spectra”, in NIST Chemistry WebBook, NIST Standard Reference Database No. 69, edited by P. Linstrom, W.G. Mallard (National Institute of Standards and Technology, Gaithersburg, 2005), http://webbook.nist.gov/chemistry

  • R. Moro, R. Rabinovich, V.V. Kresin, J. Chem. Phys. 123, 074301 (2005)

    Article  Google Scholar 

  • Glycine was purchased from VWR, deuterated glycine from Icon Services, tryptophan from Aldrich

  • K. Aflatooni, B. Hitt, G.A. Gallup, P.D. Burrow, J. Chem. Phys. 115, 6489 (2001)

    Article  ADS  Google Scholar 

  • M. Lewerenz, B. Schilling, J.P. Toennies, J. Chem. Phys. 102, 8191 (1995)

    Article  ADS  Google Scholar 

  • R. Fröchtenicht, M. Kaloudis, M. Koch, F. Huisken, J. Chem. Phys. 105, 6128 (1996)

    Article  ADS  Google Scholar 

  • The number of picked-up water molecules is given by a Poisson distribution Toennies:2004, here typically centered at 〈n〉≈3, as evidenced by the maximum at (D2O)2D+ in Figures [SEE TEXT]B and [SEE TEXT]B.

  • Increased background in the spectrum comes from picked-up fragments of diffusion pump oil abundant in this mass range.

  • B.D. Kay, Ph.D. dissertation, University of Colorado at Boulder (1982)

  • R. Moro, R. Rabinovich, V.V. Kresin, J. Chem. Phys. 124, 146102 (2006)

    Article  Google Scholar 

  • F.J. Lovas, Y. Kawashima, J.U. Grabow, R.D. Suenram, G.T. Fraser, E. Hirota, Astrophys. J. 455, L201 (1995)

  • M. Yang, P. Senet, C. Van Alsenoy, Int. J. Quantum Chem. 101, 535 (2005)

    Article  Google Scholar 

  • J.K. Gregory, D.C. Clary, K. Liu, M.G. Brown, R.J. Saykally, Science 275, 814 (1997)

    Article  Google Scholar 

  • E.W. Kaiser, J. Chem. Phys. 53, 1686 (1970)

    Article  Google Scholar 

  • R. Antoine, I. Compagnon, D. Rayane, M. Broyer, Ph. Dugourd, G. Breaux, F.C. Hagemeister, D. Pippen, R.R. Hudgins, M.F. Jarrold, Eur. Phys. J. D 20, 583 (2002)

    Article  ADS  Google Scholar 

  • W.K. Lewis, C.M. Lindsay, R.J. Bemish, R.E. Miller, J. Am. Chem. Soc. 127, 7235 (2005)

    Article  Google Scholar 

  • K. Nauta, R.E. Miller, Science 287, 293 (2000)

    Article  ADS  Google Scholar 

  • C.J. Burnham, S.S. Xantheas, M.A. Miller, B.E. Applegate, R.E. Miller, J. Chem. Phys. 117, 1109 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kresin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Y., Moro, R. & Kresin, V. Changing the fragmentation pattern of molecules in helium nanodroplets by co-embedding with water . Eur. Phys. J. D 43, 109–112 (2007). https://doi.org/10.1140/epjd/e2007-00075-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2007-00075-y

PACS.

Navigation