Skip to main content
Log in

Abstract.

Using the methods of quantum trajectories we study numerically a quantum dissipative system with periodic driving which exhibits synchronization phenomenon in the classical limit. The model allows to analyze the effects of quantum fluctuations on synchronization and establish the regimes where the synchronization is preserved in a quantum case (quantum synchronization). Our results show that at small values of Planck constant ħ the classical devil's staircase remains robust with respect to quantum fluctuations while at large ħ values synchronization plateaus are destroyed. Quantum synchronization in our model has close similarities with Shapiro steps in Josephson junctions and it can be also realized in experiments with cold atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C. Huygens, Œuvres complétes (Swets & Zeitlinger B.V., Amsterdam, 1967), Vol. 15

  • M. Bennett, M.F. Schatz, H. Rockwood, K. Wiesenfeld, Proc. R. Soc. Lond. A 458, 563 (2002)

    Article  ADS  MATH  Google Scholar 

  • A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: a universal concept in nonlinear sciences (Cambridge University Press, Cambridge UK, 2001)

  • V.I. Arnold, Izv. Akad. Nauk SSSR Ser. Mat. 25, 21 (1961) [AMS Transl. Ser. 2, 28, 61 (1963)]

    MATH  MathSciNet  Google Scholar 

  • S. Shapiro, Phys. Rev. Lett. 11, 80 (1963)

    Article  ADS  Google Scholar 

  • A.K. Jain, K.K. Likharev, J.E. Lukens, J.E. Sauvageau, Phys. Rep. 109, 309 (1984)

    Article  ADS  Google Scholar 

  • A.O. Caldeira, A.J. Leggett, Phys. Rev. Lett. 46, 211 (1981); A.D. Caldeira, A.J. Leggett, Ann. Phys. (N.Y.) 149, 374 (1983)

    Article  ADS  Google Scholar 

  • U. Weiss, Quantum dissipative systems (World Sci., Singapore, 1999)

  • D. Vion, A. Aassaime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, M.H. Devoret, Science 296, 886 (2002)

    Article  ADS  Google Scholar 

  • A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fischer, A. Garg, W. Zwerger, Rev. Mod. Phys. 59, 1 (1987)

    Article  ADS  Google Scholar 

  • Y.N. Ovchinnikov, B.I. Ivlev, Phys. Rev. B 39, 9000 (1989)

    Article  ADS  Google Scholar 

  • D.V. Averin, A.A. Odintsov, Sov. J. Low Temp. Phys. 16, 7 (1990); D.V. Averin, A.A. Odintsov, Sov. J. Low Temp. Phys. 16, 725 (1990)

    Google Scholar 

  • G. Lindblad, Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • T.A. Brun, I.C. Percival, R. Schack, J. Phys. A 29, 2077 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • T.A. Brun, Am. J. Phys. 70, 719 (2002)

    Article  ADS  Google Scholar 

  • J. Dalibard, Y. Castin, K. Mølmer, Phys. Rev. Lett. 68, 580 (1992)

    Article  ADS  Google Scholar 

  • F.M. Izrailev, Phys. Rep. 196, 299 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  • Z.-Y. Ma, M.B. d'Arcy, S.A. Gardiner, Phys. Rev. Lett. 93, 164101 (2004)

    Article  ADS  Google Scholar 

  • S. Wimberger, I. Guarneri, S. Fishman, Phys. Rev. Lett. 92, 084102 (2004)

    Article  ADS  Google Scholar 

  • M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, UK, 1997)

  • S.R. Wilkinson, C.F. Bharucha, K.W. Madison, Q. Niu, M.G. Raizen, Phys. Rev. Lett. 76, 4512 (1996)

    Article  ADS  Google Scholar 

  • R. Graham, M. Schlautmann, D.L. Shepelyansky, Phys. Rev. Lett. 67, 255 (1991)

    Article  ADS  Google Scholar 

  • G.M. Zaslavsky, Phys. Lett. A 69, 145 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  • G. Carlo, G. Benenti, D.L. Shepelyansky, Phys. Rev. Lett. 95, 164101 (2005)

    Article  ADS  Google Scholar 

  • We show here data for one typical case at K=0.8, similar results have been seen in the range 0.4 ≤K ≤2 with quasi-integrable dynamics

  • I.C. Percival, J. Phys. A 27, 1003 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  • J. Halliwell, A. Zoupas, Phys. Rev. D 52, 7294 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  • R. Schack, T.A. Brun, I.C. Percival, J. Phys. A 28, 5401 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • We study here the nonlinear dynamics in a quasi-integrable regime without Ehrenfest explosion gabriel

  • M.J. Everitt, T.D. Clark, P.B. Stiffell, J.F. Ralph, A.R. Bulsara, C.J. Harland, New J. Phys. 7, 64 (2005)

    Article  ADS  Google Scholar 

  • Let us note that a large value of entropy found in everitt in the chaotic regime at small ħ should be related to the Ehrenfest explosion discussed in gabriel

  • K. Wiesenfeld, P. Colet, S.H. Strogatz, Phys. Rev. Lett. 76, 404 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhirov, O., Shepelyansky, D. Quantum synchronization. Eur. Phys. J. D 38, 375–379 (2006). https://doi.org/10.1140/epjd/e2006-00011-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2006-00011-9

PACS.

Navigation