Skip to main content
Log in

Structure and energetics of nickel, copper, and gold clusters

  • Thermodynamics and Phase Transitions
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

The most stable structures of CuN, NiN, and AuN clusters with 2≤N≤60 have been determined using a combination of the embedded-atom (EAM), the quasi-Newton, and our own Aufbau/Abbau methods for the calculation of the total energy for a given structure, the structures of the local total-energy minima, and the structure of the global total-energy minimum, respectively. We have employed two well-known versions of the EAM: (1) the ‘bulk’ version of Daw, Baskes, and Foiles and (2) the Voter-Chen version which takes into account also properties of the dimer in the parameterization. The lower-energy structures (also for the smallest) of CuN and NiN clusters (i.e., structural details as well as symmetry) obtained with the two versions are very similar. Thus, our study supports an universality of the bulk embedding functions for copper and nickel. But for gold clusters the differences between structures calculated with the two different versions of the EAM are significant, even for larger clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • O.D. Häberlen et al., J. Chem. Phys. 106, 5189 (1997)

    Google Scholar 

  • J. Wang et al., Phys. Rev. B 66, 035418 (2002)

    Google Scholar 

  • J. Wang et al., Chem. Phys. Lett. 380, 716 (2003)

    Google Scholar 

  • G. Bravo-Pérez et al., J. Mol. Str. (Theochem) 493, 225 (1999)

    Google Scholar 

  • H. Grönbeck, W. Andreoni, Chem. Phys. 262, 1 (2000)

    Google Scholar 

  • L. Lamare, F. Michel-Calendini, Int. J. Quant. Chem. 61, 635 (1997)

    Google Scholar 

  • H. Häkkinen, U. Landman, Phys. Rev. B 62, 4 (2000)

    Google Scholar 

  • J. Olviedo, R.E. Palmer, J. Chem. Phys. 117, 21 (2002)

    Google Scholar 

  • C. Massobrio et al., J. Chem. Phys. 109, 16 (1998)

    Google Scholar 

  • H. Åkeby et al., J. Phys. Chem. 94, 5471 (1990)

    Google Scholar 

  • P. Calaminici et al., J. Chem. Phys. 105, 21 (1996)

    Google Scholar 

  • I.L. Garzón, A. Posada-Amarillas, Phys. Rev. B 54, 11796 (1996)

    Google Scholar 

  • N.T. Wilson, R.L. Johnston, Eur. Phys. J. D 12, 161 (2000)

    Google Scholar 

  • I.L. Garzón et al., Phys. Rev. Lett. 81, 8 (1998)

    Google Scholar 

  • I.L. Garzón et al., Eur. Phys. J. D 9, 211 (1999)

    Google Scholar 

  • K. Michaelian et al., Phys. Rev. B 60, 3 (1999)

    Google Scholar 

  • S. Darby et al., J. Chem. Phys. 116, 4 (2002)

    Google Scholar 

  • J. Rogan et al., Eur. Phys. J. D 28, 219 (2004)

    Google Scholar 

  • A. Sebetci, Z.B. Güvenç, unpublished

  • M. Kabir et al., Phys. Rev. A 69, 043203 (2004)

    Google Scholar 

  • T.X. Li et al., Phys. Lett. A 267, 403 (2000)

    Google Scholar 

  • C.L. Cleveland et al., Phys. Rev. Lett. 79, 10 (1997)

    Google Scholar 

  • R.N. Barnett et al., Eur. Phys. J. D 9, 95 (1999)

    Google Scholar 

  • C.L. Cleveland et al., Z. Phys. D 40, 503 (1997)

    Google Scholar 

  • F. Baletto et al., J. Chem. Phys. 116, 9 (2002)

    Google Scholar 

  • J.P.K. Doye, D.J. Wales, New J. Chem. 733 (1998)

  • V.G. Grigoryan, M. Springborg, Phys. Chem. Chem. Phys. 3, 5125 (2001)

    Google Scholar 

  • V.G. Grigoryan, M. Springborg, Chem. Phys. Lett. 375, 219 (2003)

    Google Scholar 

  • V.G. Grigoryan, M. Springborg, Phys. Rev. B 70, 205415 (2004)

    Google Scholar 

  • H. Häkkinen, M. Moseler, O. Kostko, N. Morgner, M. Hoffmann, B.V. Issendorff, unpublished

  • M.S. Daw, M.I. Baskes, Phys. Rev. Lett. 50, 1285 (1983)

    Google Scholar 

  • M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443 (1984)

    Google Scholar 

  • S.M. Foiles et al., Phys. Rev. B 33, 7983 (1986)

    Google Scholar 

  • A.F. Voter, S.P. Chen, in Characterization of Defects in Materials, edited by R.W. Siegal, J.R. Weertman, R. Sinclair, MRS Symposia Proceedings No. 82 (Materials Research Society, Pittsburgh, 1987), p. 175

  • A. Voter, Los Alamos Unclassified Technical Report No LA-UR 93-3901, 1993

  • A.F. Voter, in Intermetallic Compounds, edited by J.H. Westbrook, R.L. Fleischer (John Wiley and Sons, Ltd, 1995), Vol. 1, p. 77

  • V.A. Spasov et al., J. Chem. Phys. 112, 4 (2000)

    Google Scholar 

  • M.D. Morse, Chem. Rev. 86, 1049 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Grigoryan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigoryan, V., Alamanova, D. & Springborg, M. Structure and energetics of nickel, copper, and gold clusters. Eur. Phys. J. D 34, 187–190 (2005). https://doi.org/10.1140/epjd/e2005-00141-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2005-00141-6

Keywords

Navigation