Skip to main content
Log in

Predicting intense-field photoionization of atoms and molecules from their linear photoabsorption spectra in the ionization continuum

  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

We report a new approach to intense-field photoionization that is based on the ad hoc assumption that m photons of energy \(E_{\rm ph}\) arriving within a typical electronic response time are effectively equivalent to a single photon of energy \(mE_{\rm ph}\). The heuristic model contains no adjustable parameters and unifies apparent multiphoton and field aspects. Moreover, nonsequential, suppressed and above-threshold ionization phenomena become readily understandable. Predicted ionization intensities are in satisfactory agreement with available experimental data ranging from C6H6 to Ne3 + , from femtosecond to nanosecond laser pulses, and from ultraviolet to infrared laser radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. L.V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1945 (1964) [English translation: Sov. Phys. JETP 20, 1307 (1965)]

    MATH  Google Scholar 

  2. For a recent review see C. J. Joachain, M. Dörr, N. Kylstra, Adv. At. Mol. Opt. Phys. 42, 225 (2000)

    Google Scholar 

  3. A. Becker et al. , Phys. Rev. A 64, 023408 (2001)

    Article  Google Scholar 

  4. N.B. Delone, V.P. Krainov, Multiphoton Processes in Atoms\/ (Springer, Berlin, 1994)

  5. S. Augst et al. , J. Opt. Soc. Am. B 8, 858 (1991)

    Google Scholar 

  6. C. Guo, Phys. Rev. Lett. 85, 2276 (2000)

    Google Scholar 

  7. J. Muth-Böhm, A. Becker, F.H.M. Faisal, Phys. Rev. Lett. 85, 2280 (2000)

    Google Scholar 

  8. A. Saenz, J. Phys. B 33, 4365 (2000)

    Article  Google Scholar 

  9. A. Talebpour, J. Yang, S.L. Chin, Opt. Commun. 163, 29 (1999)

    Article  Google Scholar 

  10. C. Guo et al. , Phys. Rev. A 58, R4271 (1998)

  11. M.V. Ammosov et al. , Adv. At. Mol. Opt. Phys. 29, 33 (1992)

    Google Scholar 

  12. P. Lambropoulos, Comm. At. Mol. Phys. 20, 199 (1987)

    Article  Google Scholar 

  13. P. Lambropoulos, X. Tang, J. Opt. Soc. Am. B 4, 821 (1987)

    Google Scholar 

  14. J. Berkowitz, Photoabsorption, Photoionization, and Photoelectron Spectroscopy\/ (Academic, New York, 1979)

  15. E.E. Rennie et al. , Chem. Phys. 229, 107 (1998)

    Article  Google Scholar 

  16. H.W. Jochims, H. Baumgärtel, S. Leach, Astron. & Astrophys. 314, 1003 (1996)

    Google Scholar 

  17. Y. Iida et al. , Chem. Phys. 105, 211 (1986)

    Article  Google Scholar 

  18. G.H. Ho et al. , J. Chem. Phys. 109, 5868 (1998)

    Article  Google Scholar 

  19. D.M.P. Holland et al. , Chem. Phys. 219, 91 (1997)

    Article  Google Scholar 

  20. G. Cooper et al. , Chem. Phys. 125, 307 (1988)

    Article  Google Scholar 

  21. D.M.P. Holland et al. , Chem. Phys. 173, 315 (1993)

    Article  Google Scholar 

  22. W.F. Chan et al. , Phys. Rev. A 46, 149 (1992)

    Article  Google Scholar 

  23. S. Daviel et al. , Chem. Phys. 83, 391 (1984)

    Article  Google Scholar 

  24. D.A. Shaw et al. , Chem. Phys. 198, 381 (1995)

    Article  Google Scholar 

  25. W.F. Chan, G. Cooper, C.E. Brion, Chem. Phys. 178, 401 (1993)

    Article  Google Scholar 

  26. W.F. Chan, G. Cooper, C.E. Brion, Chem. Phys. 170, 123 (1993)

    Article  Google Scholar 

  27. C. Backx, G.R. Wight, M.J. Van der Wiel, J. Phys. B 9, 315 (1976)

    Article  Google Scholar 

  28. M. Yan, H.R. Sadeghpour, A. Dalgarno, Astrophys. J. 496, 1044 (1998)

    Article  Google Scholar 

  29. W.F. Chan, G. Cooper, C.E. Brion, Chem. Phys. 168, 375 (1992)

    Article  Google Scholar 

  30. D.A. Shaw et al. , Chem. Phys. 166, 379 (1992)

    Article  Google Scholar 

  31. W.F. Chan et al. , Chem. Phys. 170, 81 (1993)

    Article  Google Scholar 

  32. W.F. Chan et al. , Phys. Rev. A 45, 1420 (1992)

    Article  Google Scholar 

  33. W.F. Chan, G. Cooper, C.E. Brion, Phys. Rev. A 44, 186 (1991)

    Article  Google Scholar 

  34. C.E. Brion, A. Hamnet, Adv. Chem. Phys. 45, 1 (1981)

    Google Scholar 

  35. D.A. Verner et al. , Astrophys. J. 465, 487 (1996)

    Article  Google Scholar 

  36. Y. Hatano, Phys. Rep. 313, 109 (1999)

    Article  Google Scholar 

  37. See e.g. D.P. Seccombe et al. , J. Chem. Phys. 114, 4058 (2001)

    Article  Google Scholar 

  38. A. Becker, F.H.M. Faisal, Phys. Rev. A 50, 3256 (1994)

    Article  Google Scholar 

  39. M. Protopapas, C.H. Keitel, P.L. Knight, Rep. Prog. Phys. 60, 389 (1997)

    Article  Google Scholar 

  40. G.G. Paulus et al. , Nature 414, 182 (2001)

    Article  Google Scholar 

  41. T.D.G. Walsh, J.E. Decker, S.L. Chin, J. Phys. B 26, L85 (1993)

  42. S.M. Hankin et al. , Phys. Rev. A 64, 013405 (2001)

    Article  Google Scholar 

  43. D.A.L. Kilcoyne et al. , J. Electr. Spectr. Rel. Phen. 36, 153 (1985)

    Article  Google Scholar 

  44. M.J. DeWitt, E. Wells, R.R. Jones, Phys. Rev. Lett. 87, 153001 (2001)

    Google Scholar 

  45. D.A.L. Kilcoyne, S. Nordholm, N.S. Hush, Chem. Phys. 107, 197 (1986)

    Article  Google Scholar 

  46. J.W. Cooper, Phys. Rev. 128, 681 (1962)

    Article  Google Scholar 

  47. B. Witzel et al. , Phys. Rev. A 58, 3836 (1998)

    Article  Google Scholar 

  48. G.G. Paulus et al. , Phys. Rev. Lett. 72, 2851 (1994)

    Google Scholar 

  49. P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

    Article  Google Scholar 

  50. F. Grasbon et al. , Phys. Rev. A 63, 041402 (2001)

    Article  Google Scholar 

  51. S. Augst et al. , Phys. Rev. A 52, R917 (1995)

  52. C.J.G.J. Uiterwaal et al. , Phys. Rev. A 57, 392 (1998)

    Article  Google Scholar 

  53. S. Augst, D.D. Meyerhofer, Laser Phys. 4, 1155 (1994)

    Google Scholar 

  54. A.M. Müller et al. , J. Chem. Phys. 112, 9289 (2000)

    Article  Google Scholar 

  55. D.N. Fittinghoff et al. , Phys. Rev. A 49, 2174 (1994)

    Article  Google Scholar 

  56. S. Hunsche et al. , Phys. Rev. Lett. 77, 1966 (1996)

    Google Scholar 

  57. M. Tchaplyguine et al. , J. Chem. Phys. 112, 2781 (2000)

    Article  Google Scholar 

  58. E.E.B. Campbell et al. , J. Chem. Phys. 114, 1716 (2001)

    Article  Google Scholar 

  59. J. Berkowitz, J. Chem. Phys. 111, 1446 (1999)

    Article  Google Scholar 

  60. R. Jaensch, W. Kamke, Mol. Mat. 13, 143 (2000)

    Google Scholar 

  61. S. Speiser, J. Jortner, Chem. Phys. Lett. 44, 399 (1976)

    Article  Google Scholar 

  62. M. Wagner, H. Schröder, Int. J. Mass Spectrom. Ion Proc. 128, 31 (1993)

    Article  Google Scholar 

  63. B. Witzel et al. , Int. J. Mass Spectrom. Ion Proc. 172, 229 (1998)

    Article  Google Scholar 

  64. B. Witzel et al. , Phys. Rev. A 58, 3836 (1998) [erratum Phys. Rev. A 59, 3141 (1999)]

    Article  Google Scholar 

  65. R.W. Boyd, Nonlinear Optics\/ (Academic, Amsterdam, 2003)

  66. A similar assumption is made in reference [12]

  67. A. Yokoyama et al. , J. Chem. Phys. 92, 4222 (1990)

    Article  Google Scholar 

  68. A. Talebpour, S. Larochelle, S.L. Chin, J. Phys. B 31, 2769 (1998)

    Article  Google Scholar 

  69. Chun He, C.H. Becker, Phys. Rev. A 55, 1300 (1997)

    Article  Google Scholar 

  70. C. Cornaggia, P. Hering, Phys. Rev. A 62, 023403 (2000)

    Article  Google Scholar 

  71. A. Talebpour et al. , Chem. Phys. Lett. 313, 789 (1999)

    Article  Google Scholar 

  72. G.R. Burton et al. , Chem. Phys. 167, 349 (1992)

    Article  Google Scholar 

  73. Chunlei Guo, Ming Li, G.N. Gibson, Phys. Rev. Lett. 82, 2492 (1999)

    Google Scholar 

  74. D. Charalambidis et al. , Phys. Rev. A 50, R2822 (1994)

  75. S.F.J. Larochelle, A. Talebpour, S.L. Chin, J. Phys. B 31, 1215 (1998)

    Article  Google Scholar 

  76. A. Talebpour, C.-Y. Chien, S.L. Chin, J. Phys. B 29, 5725 (1996)

    Article  Google Scholar 

  77. P. Dietrich, P.B. Corkum, J. Chem. Phys. 97, 3187 (1992)

    Article  Google Scholar 

  78. A. Talebpour, Y. Liang, S.L. Chin, J. Phys. B 29, 3435 (1996)

    Article  Google Scholar 

  79. G.N. Gibson et al. , Phys. Rev. Lett. 79, 2022 (1997)

    Google Scholar 

  80. A. Talebpour, S. Larochelle, S.L. Chin, J. Phys. B 31, L49 (1998)

  81. A.I. Pegarkov, E. Charron, A. Suzor-Weiner, J. Phys. B 32, L363 (1999)

  82. M.D. Perry et al. , Phys. Rev. A 37, 747 (1988)

    Article  Google Scholar 

  83. A. Becker, F.H.M. Faisal, Phys. Rev. A 59, R1742 (1999)

  84. K. Kondo et al. , Phys. Rev. A 48, R2531 (1993)

  85. B. Walker et al. , Phys. Rev. Lett. 73, 1227 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Schröder.

Additional information

Received: 20 January 2004, Published online: 17 August 2004

PACS:

32.80.Rm Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states) - 32.80.Wr Other multiphoton processes - 42.50.Hz Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uiterwaal, C.J.G.J., Gebhardt, C.R., Schröder, H. et al. Predicting intense-field photoionization of atoms and molecules from their linear photoabsorption spectra in the ionization continuum. Eur. Phys. J. D 30, 379–392 (2004). https://doi.org/10.1140/epjd/e2004-00102-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2004-00102-7

Keywords

Navigation