Skip to main content
Log in

Abstract.

A one-dimensional Eulerian Vlasov code is used to study the self-consistent solution of a plasma facing a floating collector, in the absence of an external magnetic field. Both electrons and ions are treated with a kinetic equation. A Bhatnagar-Gross-Krook (BGK) collision term is used to describe the collisions. Acceleration of the ion flow at the Debye sheath entrance is observed together with the formation of a stable steep negative electric field in front of the floating collector. This negative electric field acts to accelerate the positive ions towards the plate, pushing back the negative electrons, such that at steady state the total current collected at the plate is zero. The codes are run for a sufficiently long time on the ions time scale to ensure the ions (argon) distribution function is reaching a steady state. For the different parameters used, the solution shows the existence of persistent regular oscillations of constant amplitude when the electron collisions are very small or negligible. These oscillations will be studied. The increase in the electron collisions damps these oscillations and helps the system reach an equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Stangeby, The Plasma Boundary of Magnetic Fusion (Institute of Physics Publishing, Abingdon (UK), devices, 2000)

  2. F. Valsaque, G. Manfredi, J. Nucl. Mater. 290, 763 (2001)

    Article  Google Scholar 

  3. H. Gerhauser, H.A. Claassen, Contr. Plasma Phys. 38, 331 (1998)

    Google Scholar 

  4. R. Chodura, Phys. Fluids 25, 1628 (1982)

    Article  MATH  Google Scholar 

  5. D. Tskhakaya, S. Kuhn, Proc. EPS Conf., Madeira, Portugal, 2001

  6. M. Shoucri, K.H. Finken, Proc. EPS Conf., Madeira, Portugal, 2001; N. Schupfer, S. Kuhn, M. Shoucri, Proc. EPS Conf., Madeira, Portugal, 2001

  7. M. Shoucri, H. Gerhauser, K.H. Finken, Czech. J. Phys. 52, 1121 (2002)

    Article  Google Scholar 

  8. M. Shoucri, J.P. Matte, A. Cote, J. Phys. D 36, 2083 (2003)

    Article  Google Scholar 

  9. C.Z. Cheng, G. Knorr, J. Comp. Phys. 22, 330 (1976)

    Google Scholar 

  10. M. Shoucri, R. Gagne, J. Comp. Phys. 24, 445 (1997); J. Comp. Phys. 27, 315 (1978)

    MATH  Google Scholar 

  11. T.H. Chung, L. Meng, H.J. Yoon, J.K. Lee, Jap. J. Appl. Phys. 36, 2874 (1997)

    Article  Google Scholar 

  12. R.N. Franklin, J. Snell, J. Phys. D: Appl. Phys. 31, 2532 (1998)

    Article  Google Scholar 

  13. I.G. Kouznetsov, A.J. Lichtenberg, M.A. Lieberman, J. Appl. Phys. 86, 4142 (1999)

    Article  Google Scholar 

  14. R. Hrach, Czech. J. Phys. 49, 155 (1999)

    Article  Google Scholar 

  15. J.T. Gudmundsson, Plasma Sources Sci. Technol. 10, 76 (2001)

    Article  Google Scholar 

  16. O.V. Batischchev, M. Shoucri, A. Batischcheva, I.P. Shkarofsky, J. Plasma Phys. 61, 347 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cardinali.

Additional information

Received: 16 October 2003, Published online: 26 May 2004

PACS:

52.65.Ff Fokker-Planck and Vlasov equation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoucri, M., Cardinali, A., Matte, J.P. et al. Numerical study of plasma-wall transition using an Eulerian Vlasov code. Eur. Phys. J. D 30, 81–92 (2004). https://doi.org/10.1140/epjd/e2004-00075-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2004-00075-5

Keywords

Navigation