Skip to main content
Log in

Dynamics in a cluster under the influence of intense femtosecond hard X-ray pulses

  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

In this paper we examine the behavior of small cluster of atoms in a short (10-50 fs) very intense hard X-ray (10 keV) pulse. We use numerical modeling based on the non-relativistic classical equation of motion. Quantum processes are taken into account by the respective cross-sections. We show that there is a Coulomb explosion, which has a different dynamics than one finds in classical laser driven cluster explosions. We discuss the consequences of our results to single molecule imaging by the free electron laser pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Materlik, T. Tschentscher, LCLS and TESLA feasibility reports, The X-ray free electron laser, TESLA Technical Designe Report (2001)

  2. J. Arthur, Rev. Sci. Instrum. 73, 1393 (2002)

    Article  Google Scholar 

  3. Z.Y. Chen, C.D. Cogley, J.H. Hendricks, B.D. May, A.W. Castleman, J. Chem. Phys. 93, 3215 (1990)

    Article  Google Scholar 

  4. T. Ditmire, Nature 386, 54 (1997)

    Article  Google Scholar 

  5. Y.L. Shao, T. Ditmire, J.W.G. Tisch, E. Springate, J.P. Marangos, M.H.R. Hutchinson, Phys. Rev. Lett. 77, 3343 (1996)

    Article  Google Scholar 

  6. T. Ditmire, J. Zweiback, V.P. Yanovsky, T.E. Cowan, G. Hays, K.B. Wharton, Nature 398, 489 (1999)

    Article  Google Scholar 

  7. R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, J. Hajdu, Nature 406, 752 (2000)

    Article  Google Scholar 

  8. K.S. Trainor, J. Appl. Phys. 54, 2372 (1983)

    Article  Google Scholar 

  9. S.H. Glenzer, K.B. Fournier, C. Decker, B.A. Hammel, R.W. Lee, L. Lours, B.J. MacGowan, A.L. Osterheld, Phys. Rev. E 62, 2728 (2000)

    Article  Google Scholar 

  10. B. Ziaja, D. van der Spoel, A. Szöke, J. Hajdu, Phys. Rev. B 64, 214104 (2001)

    Article  Google Scholar 

  11. B. Ziaja, A. Szöke, D. van der Spoel, J. Hajdu, Phys. Rev. B 66, (2002) 024116

    Google Scholar 

  12. In half period of the X-ray frequencies an electron changes its velocity by about \(v=3\times10^6\) m/s (corresponding to E kin =30 eV) and its position by \(s=0.002~\textrm{\AA}\).

  13. The value of r 0 was 0.25

  14. W. Heitler, The Quantum Theory of Radiation (Clarendon Press, Oxford, 1954)

  15. L.V. Azaroff, X-Ray Specroscopy (McGraw-Hill Inc, USA, 1974)

  16. M.O. Krause, J.H. Oliver, J. Phys. Chem. Ref. Data 8, 329 (1979)

    MATH  Google Scholar 

  17. L.D. Landau, E.M. Lifschitz, Quantum Mechanics (Non-Relativistic Theory) 3rd edn. (Pergamon Press, Oxford, England, 1977)

  18. S. Tanuma, C.J. Powell, D.R. Penn, Surf. Interf. Anal. 11, 577 (1988)

    Google Scholar 

  19. S. Tanuma, C.J. Powell, D.R. Penn, Surf. Interf. Anal. 17, 911 (1991)

    Google Scholar 

  20. J.C. Ashley, J. Electr. Spectrosc. Relat. Phenom. 50, 323 (1990)

    Article  Google Scholar 

  21. J.C. Ashley, J. Appl. Phys. 69, 674 (1991)

    Article  Google Scholar 

  22. Y.K. Kim, M.E. Rudd, Phys. Rev. A 50, 3954 (1994)

    Article  Google Scholar 

  23. On precision we mean the systematic errors caused by the approximations (what processes are taken into account) used by the different models. Turning on and off a process we can get an estimate for the importance of that process

  24. S.N. Nahar, A.K. Pradhan, Astrophys. J. Suppl. 111, 339 (1997)

    Article  Google Scholar 

  25. U.I. Safronova, T. Kato, J. Phys. B 31, 2501 (1998)

    Article  Google Scholar 

  26. U. Saalmann, J.-M. Rost, Phys. Rev. Lett. 89, 143401 (2002)

    Article  Google Scholar 

  27. C. Rose-Petruck, K.J. Schafer, K.R. Wilson, C.P.J. Barty, Phys. Rev. A 55, 1182 (1997)

    Article  Google Scholar 

  28. T. Ditmire, Phys. Rev. A 57, R4094 (1998)

  29. I. Last, J. Jortner, Phys. Rev. A 60, 2215 (1999)

    Article  Google Scholar 

  30. I. Last, J. Jortner, Phys. Rev. A 62, 013201 (2000)

    Article  Google Scholar 

  31. V.P. Krainova, M.B. Smirnovb, Phys. Rep. 370, 237 (2001)

    Article  Google Scholar 

  32. The number of the localized electrons was determined by going backwards in the calculations (so starting from the end), and counting those electrons, which stayed longer than 1, 2, etc. fs in the vicinity of the same atom. Note that this way we can speak about localization only within the time frame of our calculation, we call this temporary localization

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Jurek.

Additional information

Received: 22 September 2003, Published online: 9 March 2004

PACS:

61.80.-x Physical radiation effects, radiation damage - 36.40.-c Atomic and molecular clusters - 61.46. + w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurek, Z., Faigel, G. & Tegze, M. Dynamics in a cluster under the influence of intense femtosecond hard X-ray pulses. Eur. Phys. J. D 29, 217–229 (2004). https://doi.org/10.1140/epjd/e2004-00033-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2004-00033-3

Keywords

Navigation