Skip to main content
Log in

Abstract.

The interaction of classical and quantized electromagnetic fields with an ensemble of atoms in an optical cavity is considered. Four fields drive a double-\(\Lambda\) level scheme in the atoms, consisting of a pair of \(\Lambda\) systems sharing the same set of lower levels. Two of the fields produce maximum coherence, \(\rho_{12}\approx-1/2\), between the ground state sublevels 1 and 2. This pumping scheme involves equal intensity fields that are resonant with both the one- and two-photon transitions of the \(\Lambda\) system. There is no steady-state absorption of these fields, implying that the fields induce a type Electromagnetically-Induced Transparency (EIT) in the medium. An additional pair of fields interacting with the second \(\Lambda\) system, combined with the EIT fields, leads to squeezing of the atom spin associated with the ground state sublevels. Our method involves a new mechanism for creating steady-state spin squeezing using an optical cavity. As the cooperativity parameter C is increased, the optimal squeezing varies as C -1/3. For experimentally accessible values of C, squeezing as large as 90% can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.J. Wineland, J.J. Bollinger, W.M. Itano, D.J. Heinzen, Phys. Rev. A 50, 67 (1994)

    Article  Google Scholar 

  2. A. Kuzmich, K. Molmer, E.S. Polzik, Phys. Rev. Lett. 79, 4782 (1997)

    Article  Google Scholar 

  3. A. Kuzmich, L. Mandel, J. Janis, Y.E. Young, R. Ejnisman, N.P. Bigelow, Phys. Rev. A 60, 2346 (1999).

    Article  Google Scholar 

  4. L. Vernac, M. Pinard, E. Giacobino, Phys. Rev. A 62, 063812 (2000)

    Article  Google Scholar 

  5. L. Vernac, M. Pinard, E. Giacobino, Eur. Phys. J. D 17, 125 (2001)

    Article  Google Scholar 

  6. L. Vernac, M. Pinard, V. Josse, E. Giacobino, Eur. Phys. J. D 18, 129 (2002)

    Article  Google Scholar 

  7. I. Bouchoule, K. Molmer, Phys. Rev. A 65, 041803 (2002)

    Article  Google Scholar 

  8. A. Andre, M.D. Lukin, Phys. Rev. A 65, 053819 (2002)

    Article  Google Scholar 

  9. I. Bouchoule, K. Molmer, Phys. Rev. A 66, 043811 (2002)

    Article  Google Scholar 

  10. A. Dantan, M. Pinard, V. Josse, N. Nayak, P.R. Berman, Phys. Rev. A 67, 045801 (2003)

    Article  Google Scholar 

  11. For a review of double-lambda sytems with additional references, see M. Lukin, P.R. Hemmer, M.O. Scully, in Advances in Optical, Molecular and Optical Physics, edited by B. Bederson, H. Walther (Academic Press, San Diego, 2000), Vol. 42, pp. 347-386

  12. S.E. Harris, L.V. Hau, Phys. Rev. Lett. 82, 4611 (1999)

    Article  Google Scholar 

  13. D.F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth, M.D. Lukin, Phys. Rev. Lett. 86, 783 (2001)

    Article  Google Scholar 

  14. C.L. Garrido-Alzar, L.S. Cruz, J.G. Aguirre Gó mez, M. França Santos, P. Nussenzveig, Europhys. Lett. 61, 485 (2003)

    Google Scholar 

  15. O. Kocharovskaya, Y. Rostovstev, M.O. Scully, Phys. Rev. Lett. 86, 628 (2001)

    Article  Google Scholar 

  16. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photons Interactions (Wiley, New-York, 1991), p. 385

  17. C.W. Gardiner, Handbook of Stochastic Methods (Springer Verlag, Berlin, 1985)

  18. J. Söding, D. Guéry-Odelin, P. Desbiolles, G. Ferrari, J. Dalibard, Phys. Rev. Lett. 80, 1869 (1998)

    Article  Google Scholar 

  19. M. Kitawaga, M. Ueda, Phys. Rev. A 47, 5138 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pinard.

Additional information

Received: 28 May 2003, Published online: 12 August 2003

PACS:

42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps - 42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quantum state engineering and measurements - 42.65.Pc Optical bistability, multistability, and switching, including local field effects

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dantan, A., Pinard, M. & Berman, P.R. EIT-assisted atomic squeezing. Eur. Phys. J. D 27, 193–199 (2003). https://doi.org/10.1140/epjd/e2003-00253-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2003-00253-y

Keywords

Navigation