Skip to main content

Advertisement

Log in

Abstract.

We present calculated results for the optimization highly-charged fragment ion formation in the Coulomb explosion of I2 in an intense laser field. Calculations are performed using a simple genetic algorithm and a classical model for the Coulomb explosion process. We find that at low intensity the production of highly-charged fragment ions is optimized by a Fourier-limited pulse, whereas at higher intensity the Coulomb explosion is optimized by a sequence of pulses, with a time-separation determined by enhanced ionization at the critical internuclear distance. Our calculations provide insight into the sensitivity of adaptive pulse shaping experiments to the parameters and evolutionary approaches used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.H. Zewail, J. Phys. Chem. A 104, 5660 (2000), and references therein

    Article  Google Scholar 

  2. R.S. Judson, H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992)

    Article  Google Scholar 

  3. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, G. Gerber, Science 282, 919 (1998)

    Article  PubMed  Google Scholar 

  4. D.E. Goldberg, Genetic Algorithms in search, optimization and machine learning (Addison-Wesley, 1989)

  5. D. Beasley, D.R. Bull, R.R. Martin, Univers. Comp. 15, 58 (1993)

    Google Scholar 

  6. J.H. Posthumus, A.J. Giles, M.R. Thompson, W. Shaikh, A.J. Langley, L.J. Frasinski, K. Codling, J. Phys. B 29, L525 (1996)

  7. E. Constant, H. Stapelfeldt, P.B. Corkum, Phys. Rev. Lett. 76, 4140 (1996)

    Article  Google Scholar 

  8. T. Seideman, M.Yu. Ivanov, P.B. Corkum, Phys. Rev. Lett. 75, 2819 (1995)

    Article  Google Scholar 

  9. F. Rosca-Pruna, E. Springate, H.L. Offerhaus, M. Krishnamurthy, C. Nicole, N. Farid, M.J.J. Vrakking, J. Phys. B 34, 4919 (2001)

    Article  Google Scholar 

  10. S. Banerjee, D. Mathur, G. Ravindra Kumar, Phys. Rev. A 63, 045401 (2001)

    Article  Google Scholar 

  11. E. Springate, F. Rosca-Pruna, H.L. Offerhaus, M. Krishnamurthy, M.J.J. Vrakking, J. Phys. B 34, 4939 (2001)

    Article  Google Scholar 

  12. M.V. Ammosov, N.B. Delone, V.P. Krainov, Sov. Phys. JETP 91, 1191 (1986)

    Google Scholar 

  13. A.M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000)

    Article  Google Scholar 

  14. D. Zeidler, S. Frey, K.-L. Kompa, M. Motzkus, Phys. Rev. A 64, 023420 (2001)

    Article  Google Scholar 

  15. These optimum parameters were found in test calculations, where a fitness function was defined directly based on the time dependence of the laser pulse. This fitness function consisted of a superpostion of an autocorrelation term and a convolution term, similar to the dependence of the fitness function on the structure of the laser pulse in the Coulomb explosion calculation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. J. Vrakking.

Additional information

Received: 6 January 2003, Published online: 15 July 2003

PACS:

33.80.Rv Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states) - 82.53.Eb Pump probe studies of photodissociation - 02.60.Pn Numerical optimization

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vrakking, M.J.J. Control of the Coulomb explosion of I2 . Eur. Phys. J. D 26, 111–118 (2003). https://doi.org/10.1140/epjd/e2003-00203-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2003-00203-9

Keywords

Navigation