Skip to main content
Log in

Abstract.

We review how moderately intense laser fields offer an approach to alignment of molecules [1]. In particular, molecules can be aligned along a given space fixed axis, forced to a plane, or their rotations about all three possible axes can be eliminated by choosing a linearly polarized, a circularly polarized, or an elliptically polarized alignment field, respectively. We show how molecules in the gas phase can be aligned by turning on the laser field either slowly (a few nanoseconds) or fast (a few picoseconds) with respect to the rotational period of the molecules. The role of the intensity of the laser field and the rotational temperature of the molecules is discussed. Before concluding we describe how aligned molecules enables control and selectivity in the interaction between polarized light and molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. This paper is a summary of an invited lecture presented at the 9th International Conference On Multiphoton Processes at Elounda, Crete, October 18-23 (2002)

  2. B. Friedrich, D. Herschbach, Phys. Chem. Chem. Phys. 2, 419 (2000)

    Article  Google Scholar 

  3. P. Bernath, Spectra of Atoms and Molecules (Oxford University Press, New York, 1995)

  4. B.A. Zon, B.G. Katsnel’son, Sov. Phys.-JETP 42, 595 (1976)

    Google Scholar 

  5. T. Seideman, J. Chem. Phys. 103, 7887 (1995)

    Article  Google Scholar 

  6. B. Friedrich, D.R. Herschbach, Phys. Rev. Lett. 74, 4623 (1995)

    Article  Google Scholar 

  7. Due to space limitation the theory of molecular alignment is not discussed here. We refer the interested reader to references [5,6,14-18]

  8. W. Kim, P.M. Felker, J. Chem. Phys. 104, 1147 (1996)

    Article  Google Scholar 

  9. H. Sakai , J. Chem. Phys. 110, 10235 (1998)

    Article  Google Scholar 

  10. J.J. Larsen, H. Sakai, C.P. Safvan, I. Wendt-Larsen, H. Stapelfeldt, J. Chem. Phys. 111, 7774 (1999)

    Article  Google Scholar 

  11. W. Kim, P.M. Felker, J. Chem. Phys. 107, 2193 (1997)

    Article  Google Scholar 

  12. J.J. Larsen, K. Hald, N. Bjerre, H. Stapelfeldt, T. Seideman, Phys. Rev. Lett. 85, 2470 (2000)

    Article  Google Scholar 

  13. Several groups have reported calculations on nonadiabatic alignment some of them are references [14-18]

  14. J. Ortigoso, M. Rodriguez, M. Gupta, B. Friedrich, J. Chem. Phys. 110, 3870 (1999)

    Article  Google Scholar 

  15. T. Seideman, Phys. Rev. Lett. 83, 4971 (1999)

    Article  Google Scholar 

  16. C.M. Dion, A. Keller, O. Atabek, A.D. Bandrauk, Phys. Rev. A 59, 1382 (1999)

    Article  Google Scholar 

  17. M. Machholm, J. Chem. Phys. 115, 10724 (2001)

    Article  Google Scholar 

  18. N.E. Henriksen, Chem. Phys. Lett. 312, 196 (1999)

    Article  Google Scholar 

  19. F. Rosca-Pruna, M.J.J. Vrakking, J. Chem. Phys. 116, 6567 (2002)

    Article  Google Scholar 

  20. E. Peronne, M.D. Poulsen, C.Z. Bisgaard, H. Stapelfeldt, T. Seideman, Phys. Rev. Lett. (submitted)

  21. J.J. Larsen, I. Wendt-Larsen, H. Stapelfeldt, Phys. Rev. Lett. 83, 1123 (1999)

    Article  Google Scholar 

  22. M.D. Poulsen, E. Skovsen, H. Stapelfeldt, J. Chem. Phys. 117, 2097 (2002)

    Article  Google Scholar 

  23. T. Seideman, M.Yu. Ivanov, P.B. Corkum, Phys. Rev. Lett. 75, 2819 (1995)

    Article  Google Scholar 

  24. T. Seideman, M.Yu. Ivanov, P.B. Corkum, Chem. Phys. Lett. 252, 181 (1996)

    Article  Google Scholar 

  25. J.H. Posthumus, A.J. Giles, M.R. Thompson, K. Codling, J. Phys. B 28, L349 (1995)

  26. T. Zuo, A.D. Bandrauk, Phys. Rev. A 52, 2511 (1995)

    Article  Google Scholar 

  27. The radial distribution is obtained by an angular integration of the 2-dimensional I\(^{2+}\) ion image. It is proportional to the projection of the ion velocity on the detector, which in term, is very close to the full ion velocity because the alignment of the molecules causes the ions to be ejected in the plane of the detector

  28. ICl was seeded in 1 bar of helium and \(I_{\rm YAG} = 6 \times 10^{11}\) W/cm\(^2\)

  29. C.M. Dion , Phys. Rev. A 65, 063408 (2002)

    Article  Google Scholar 

  30. K. Hoki, Y. Fujimura, Chem. Phys. 267, 187 (2002)

    Article  Google Scholar 

  31. V.R. Bhardwaj, D.M. Rayner, D.M. Villeneuve, P.B. Corkum, Phys. Rev. Lett. 87, 253003 (2001)

    Google Scholar 

  32. R. Velotta, N. Hay, M.B. Mason, M. Castillejo, J.P. Marangos, Phys. Rev. Lett. 87, 183901 (2001)

    Google Scholar 

  33. T. Seideman, Annu. Rev. Phys. Chem. 53, 41 (2002)

    Article  Google Scholar 

  34. R.A. Bartels , Phys. Rev. Lett. 88, 013903 (2002)

    Article  Google Scholar 

  35. V. Kalosha, M. Spanner, J. Herrmann, M. Ivanov, Phys. Rev. Lett. 88, 103901 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Stapelfeldt.

Additional information

Received: 15 November 2002, Published online: 18 March 2003

PACS:

33.15.Bh General molecular conformation and symmetry; stereochemistry - 32.80.Lg Mechanical effects of light on atoms, molecules, and ions - 33.80.Gj Diffuse spectra; predissociation, photodissociation - 33.80.Rv Multiphoton ionization and excitation to highly excited states (e.g. Rydberg states) - 34.50.Lf Chemical reactions, energy disposal, and angular distribution, as studied by atomic and molecular beams

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stapelfeldt, H. Alignment of molecules by strong laser pulses. Eur. Phys. J. D 26, 15–19 (2003). https://doi.org/10.1140/epjd/e2003-00064-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2003-00064-2

Keywords

Navigation