Skip to main content
Log in

Measuring the photon fragmentation function at HERA

  • Theoretical Physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The production of final state photons in deep inelastic scattering originates from photon radiation off leptons or quarks involved in the scattering process. Photon radiation off quarks involves a contribution from the quark-to-photon fragmentation function, corresponding to the non-perturbative transition of a hadronic jet into a single, highly energetic photon accompanied by some limited hadronic activity. Up to now, this fragmentation function was measured only in electron–positron annihilation at LEP. We demonstrate by a dedicated parton-level calculation that a competitive measurement of the quark-to-photon fragmentation function can be obtained in deep inelastic scattering at HERA. Such a measurement can be obtained by studying the photon energy spectra in γ+(0+1)-jet events, where γ denotes a hadronic jet containing a highly energetic photon (the photon jet). Isolated photons are then defined from the photon jet by imposing a minimal photon energy fraction. For this so-called democratic clustering approach, we study the cross sections for isolated γ+(0+1)-jet and γ+(1+1)-jet production as well as for the inclusive isolated photon production in deep inelastic scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Koller, T.F. Walsh, P.M. Zerwas, Z. Phys. C 2, 197 (1979)

    Article  Google Scholar 

  2. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  3. OPAL Collaboration, K. Ackerstaff et al., Eur. Phys. J. C 2, 39 (1998) [hep-ex/9708020]

    Article  ADS  Google Scholar 

  4. D.W. Duke, J.F. Owens, Phys. Rev. D 26, 1600 (1982)

    Article  ADS  Google Scholar 

  5. M. Glück, E. Reya, A. Vogt, Phys. Rev. D 48, 116 (1993); Erratum-ibid. D 51, 1427 (1995)

    Article  ADS  Google Scholar 

  6. L. Bourhis, M. Fontannaz, J.P. Guillet, Eur. Phys. J. C 2, 529 (1998) [hep-ph/9704447]

    Article  ADS  Google Scholar 

  7. E.W.N. Glover, A.G. Morgan, Z. Phys. C 62, 311 (1994)

    Article  Google Scholar 

  8. ALEPH Collaboration, D. Buskulic et al., Z. Phys. C 69, 365 (1996)

    Article  Google Scholar 

  9. A. Gehrmann-De Ridder, E.W.N. Glover, Nucl. Phys. B 517, 269 (1998) [hep-ph/9707224]

    Article  ADS  Google Scholar 

  10. A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, Phys. Lett. B 414, 354 (1997) [hep-ph/9705305]

    Article  ADS  Google Scholar 

  11. A. Gehrmann-De Ridder, E.W.N. Glover, Eur. Phys. J. C 7, 29 (1999) [hep-ph/9806316]

    Article  ADS  Google Scholar 

  12. S. Frixione, Phys. Lett. B 429, 369 (1998) [hep-ph/9801442]

    Article  ADS  Google Scholar 

  13. J.E. Huth et al., Proceedings of Summer Study on High Energy Physics, Research Directions for the Decade, Snowmass, 1990; CDF Collaboration, F. Abe et al., Phys. Rev. D 45, 1448 (1992); M. Seymour, Z. Phys. C 62, 127 (1994)

    Article  Google Scholar 

  14. ZEUS Collaboration, S. Chekanov et al., Phys. Lett. B 595, 86 (2004) [hep-ex/0402019]

    Article  ADS  Google Scholar 

  15. T. Sjöstrand, P. Edén, C. Friberg, L. Lönnblad, G. Miu, S. Mrenna, E. Norrbin, Comput. Phys. Commun. 135, 238 (2001) [hep-ph/0010017]

    Article  MATH  ADS  Google Scholar 

  16. G. Marchesini, B.R. Webber, G. Abbiendi, I.G. Knowles, M.H. Seymour, L. Stanco, Comput. Phys. Commun. 67, 465 (1992)

    Article  ADS  Google Scholar 

  17. M. Glück, C. Pisano, E. Reya, I. Schienbein, Eur. Phys. J. C 27, 427 (2003) [hep-ph/0209335]; C. Pisano, doctoral thesis, Universität Dortmund (2005) [hep-ph/0512306]

    Article  ADS  Google Scholar 

  18. H. Spiesberger, Phys. Rev. D 52, 4936 (1995) [hep-ph/9412286]; M. Roth, S. Weinzierl, Phys. Lett. B 590, 190 (2004) [hep-ph/0403200]

    Article  ADS  Google Scholar 

  19. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Eur. Phys. J. C 39, 155 (2005) [hep-ph/0411040]

    Article  ADS  Google Scholar 

  20. D.H. Saxon, Proceedings of Ringberg Workshop New Trends in HERA Physics 2005, G. Grindhammer, B. Kniehl, G. Kramer and W. Ochs, World Scientific (Singapore, 2006), p. 177 [hep-ex/0601013]

  21. A. Gehrmann-De Ridder, T. Gehrmann, E. Poulsen, Phys. Rev. Lett. 96, 132002 (2006) [hep-ph/0601073]

    Article  ADS  Google Scholar 

  22. A. Gehrmann-De Ridder, G. Kramer, H. Spiesberger, Phys. Lett. B 459, 271 (1999) [hep-ph/9903377]; Nucl. Phys. B 578, 326 (2000) [hep-ph/0003082]

    Article  ADS  Google Scholar 

  23. L.E. Gordon, W. Vogelsang, Phys. Rev. D 52, 58 (1995); M. Krawczyk, A. Zembrzuski, Phys. Rev. D 64, 114017 (2001) [hep-ph/0105166]; M. Fontannaz, J.P. Guillet, G. Heinrich, Eur. Phys. J. C 21, 303 (2001) [hep-ph/0105121]; Eur. Phys. J. C 26, 209 (2002) [hep-ph/0206202]

    Article  ADS  Google Scholar 

  24. ZEUS Collaboration, J. Breitweg et al., Phys. Lett. B 472, 175 (2000) [hep-ex/9910045]; H1 Collaboration, A. Aktas et al., Eur. Phys. J. C 38, 437 (2005) [hep-ex/0407018]

    Article  Google Scholar 

  25. D.Y. Bardin, C. Burdik, P.C. Khristova, T. Riemann, Z. Phys. C 42, 679 (1989)

    Article  Google Scholar 

  26. W.T. Giele, E.W.N. Glover, Phys. Rev. D 46, 1980 (1992)

    Article  ADS  Google Scholar 

  27. B. Badelek, J. Kwieciński, Phys. Lett. B 295, 263 (1992); Rev. Mod. Phys. 68, 445 (1996) [hep-ph/9408318]

    Article  ADS  Google Scholar 

  28. U. Baur, J.A.M. Vermaseren, D. Zeppenfeld, Nucl. Phys. B 375, 3 (1992)

    Article  ADS  Google Scholar 

  29. European Muon Collaboration, J.J. Aubert et al., Phys. Lett. B 218, 248 (1989)

    Article  Google Scholar 

  30. G. Curci, W. Furmanski, R. Petronzio, Nucl. Phys. B 175, 27 (1980); W. Furmanski, R. Petronzio, Phys. Lett. B 97, 437 (1980), Z. Phys. C 11, 293 (1982)

    Article  ADS  Google Scholar 

  31. A. Gehrmann-De Ridder, G. Kramer, H. Spiesberger, Eur. Phys. J. C 11, 137 (1999) [hep-ph/9907511]

    Article  MathSciNet  ADS  Google Scholar 

  32. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P. Nadolsky, W.K. Tung, JHEP 0207, 012 (2002) [hep-ph/0201195]

    Article  ADS  Google Scholar 

  33. C. Schmitz, private communication

  34. H1 Collaboration, C. Adloff et al., Eur. Phys. J. C 19, 289 (2001) [hep-ex/0010054]

    ADS  Google Scholar 

  35. H1 Collaboration, C. Adloff et al., Eur. Phys. J. C 19, 429 (2001) [hep-ex/0010016]

    ADS  Google Scholar 

  36. S.D. Ellis, D.E. Soper, Phys. Rev. D 48, 3160 (1993) [hep-ph/9305266]

    Article  ADS  Google Scholar 

  37. S. Catani, Y.L. Dokshitzer, M. Olsson, G. Turnock, B.R. Webber, Phys. Lett. B 269, 432 (1991)

    Article  ADS  Google Scholar 

  38. S. Catani, Y.L. Dokshitzer, B.R. Webber, Phys. Lett. B 285, 291 (1992)

    Article  ADS  Google Scholar 

  39. S. Catani, M. Fontannaz, J.P. Guillet, E. Pilon, JHEP 0205, 028 (2002) [hep-ph/0204023]

    Article  ADS  Google Scholar 

  40. T. Binoth, J.P. Guillet, E. Pilon, M. Werlen, Phys. Rev. D 63, 114016 (2001) [hep-ph/0012191]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gehrmann-De Ridder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gehrmann-De Ridder, A., Gehrmann, T. & Poulsen, E. Measuring the photon fragmentation function at HERA. Eur. Phys. J. C 47, 395–411 (2006). https://doi.org/10.1140/epjc/s2006-02574-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2006-02574-x

Keywords

Navigation