Skip to main content

Advertisement

Log in

Energy distribution in Reissner–Nordström anti-de Sitter black holes in the Møller prescription

  • Theoretical Physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract

The energy (due to matter plus fields including gravity) distribution of the Reissner–Nordström anti-de Sitter (RN AdS) black holes is studied by using the Møller energy-momentum definition in general relativity. This result is compared with the energy expression obtained by using the Einstein and Tolman complexes. The total energy depends on the black hole mass M and charge Q and the cosmological constant Λ. The energy distribution of the RN AdS is also calculated by using the Møller prescription in teleparallel gravity. We get the same result for both of these different gravitation theories. The energy obtained is also independent of the teleparallel dimensionless coupling constant, which means that it is valid not only in the teleparallel equivalent of general relativity, but also in any teleparallel model. In special cases of our model, we also discuss the energy distributions associated with the Schwarzschild AdS, RN and Schwarzschild black holes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W.H. Freeman, N.Y. Co, N.Y., 1973)

  2. F.I. Cooperstock, R.S. Sarracino, J. Phys. A 11, 877 (1918)

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Einstein, Sitzungsber. Preus. Akad. Wiss. Berlin (Math. Phys.), 778 (1915), Addendum ibid. 799 (1915)

  4. A Trautman, in Gravitation and Introduction to Current Research, ed. by L. Witten (Wiley, New York, 1962), 169

  5. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, 4th Edition (Pergamon Press, Oxford, re-printed in 2002)

  6. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (John Wiley and Sons, New York, 1972)

  7. A. Papapetrou, Proc. R. Irish. Acad. A 52, 11 (1948)

    MATH  MathSciNet  Google Scholar 

  8. P.G. Bergmann, R. Thomson, Phys. Rev. 89, 400 (1953)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. C. Møller, Ann. Phys. (NY) 4, 347 (1958); Ann. Phys. (NY) 12, 118 (1961)

    Article  MATH  ADS  Google Scholar 

  10. R.C. Tolman, Relativity, Thermodynamics and Cosmology (Oxford Univ. Pres. London, 1934) p. 227

  11. K.S. Virbhadra, N. Rosen, Gen. Rel. Grav. 25, 429 (1993); K.S. Virbhadra, A. Chamorro, Pramana J. Phys. 45, 181 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. K.S. Virbhadra, Phys. Rev. D 41, 1086 (1990); 42, 2919 (1990); 60, 104041 (1999); Pramana J. Phys. 45, 215 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. E. Vagenas, Int. J. Mod. Phys. A 18, 5781 (2003); Int. J. Mod. Phys. A 18, 5949 (2003); Mod. Phys. Lett. A 19, 213 (2004); Int. J. Mod. Phys. D 14, 573 (2005); S.S. Xulu, Int. J. Mod. Phys. D 7, 773 (1998) [hep-th/0308077]; A 15, 2979 (2000); I. Radinschi, Fizika B 9, 43 (2000); Acta Physica Slovaca 49, 1 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. G. Lessner, Gen. Rel. Grav. 28, 527 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. F.I. Mikhail, M.I. Wanas, A. Hindawi, E.I. Lashin, Int. J. Theor. Phys. 32, 1627 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. T. Vargas, Gen. Rel. Grav. 36, 1255 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. M. Saltı, A. Havare, Int. J. Mod. Phys. A 20, 2169 (2005)

    Article  ADS  Google Scholar 

  18. M. Saltı, Astrophys. Space Sci. 299, 159 (2005)

    Article  ADS  Google Scholar 

  19. O. Aydogdu, M. Saltı, Astrophys. Space Sci. 299, 227 (2005)

    Article  MATH  ADS  Google Scholar 

  20. M. Saltı, Nuovo Cimento B 120, 53 (2005); Mod. Phys. Lett. A 20, 2175 (2005); Acta Phys. Slov. 55, 563 (2005); O. Aydogdu, Int. J. Mod. Phys. A, to appear [gr-qc/0601070]; D, to appear [gr-qc/0509047]; Fortschritte der Physik, to appear; O. Aydogdu, M. Saltı, M. Korunur, Acta Phys. Slov., 55, 537 (2005); M. Saltı, O. Aydogdu, gr-qc/0511030; gr-qc/0509061; Astrophys. Space Sci., to appear [gr-qc/0509022]; Prog. Theor. Phys. 115, 63 (2006)

    ADS  Google Scholar 

  21. E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998)

    MATH  MathSciNet  Google Scholar 

  22. A. Chamblin, R. Emparan, C.V. Johnson, R.C. Myers, Phys. Rev. D 60, 064018 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  23. H.P. Robertson, Ann. Math. (Princeton) 33, 496 (1932)

    Article  MATH  Google Scholar 

  24. R. Weitzenböck, Invariantent Theorie (Noordhoff, Groningen, 1923)

  25. K. Hayashi, T. Shirafuji, Phys. Rev. D 19, 3524 (1978)

    Article  ADS  Google Scholar 

  26. V.V. de Andrade, J.G. Pereira, Phys. Rev. D 56, 4689 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  27. C. Møller, Mat. Fys. Medd. K. Vidensk. Selsk. 39, 13 (1978); 1, 10 (1961)

    Google Scholar 

  28. D. Saez, Phys. Rev. D 27, 2839 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  29. H. Meyer, Gen. Rel. Grav. 14, 531 (1982)

    Article  Google Scholar 

  30. K. Hayashi, T. Shirafuji, Prog. Theor. Phys. 64, 866 (1980); 65, 525 (1980)

    MATH  ADS  Google Scholar 

  31. F.W. Hehl, J. Nitsch, P. von der Heyde, General Relativity and Gravitation, ed. by A. Held (Plenum, New York, 1980)

  32. Wolfram Research, Mathematica 5.0 (2003)

  33. TCI Software Research, Scientific Workplace 3.0 (1998)

  34. M. Saltı, O. Aydogdu, Found. Phys. Lett., to appear [gr-qc/0512080]

  35. Y-C. Yang, C.-T. Yeh, R.-R. Hsu, C.-R. Lee, Int. J. Mod. Phys. D 6, 349 (1997)

    Article  MATH  ADS  Google Scholar 

  36. C.-C. Chang, J.M. Nester, C.-M. Chen, Phys. Rev. Lett. 83, 1897 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saltı.

Additional information

PACS

04.20.-q; 04.20.Jb; 04.50.+h

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saltı, M., Aydogdu, O. Energy distribution in Reissner–Nordström anti-de Sitter black holes in the Møller prescription. Eur. Phys. J. C 47, 247–251 (2006). https://doi.org/10.1140/epjc/s2006-02550-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2006-02550-6

Keywords

Navigation