Skip to main content
Log in

Probing the QCD equation of state with thermal photons in nucleus–nucleus collisions at RHIC

  • Theoretical Physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract

Thermal photon production at mid-rapidity in Au+Au reactions at \(\sqrt{s_{NN}}=200 GeV\) is studied in the framework of a hydrodynamical model that describes efficiently the bulk identified hadron spectra at RHIC. The combined thermal plus NLO pQCD photon spectrum is in good agreement with the yields measured by the PHENIX experiment for all Au+Au centralities. Within our model, we demonstrate that the correlation of the thermal photon slopes with the charged hadron multiplicity in each centrality provides direct empirical information on the underlying degrees of freedom and on the form of the equation of state, s(T)/T3, of the strongly interacting matter produced in the course of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See e.g. F. Karsch, Lect. Notes Phys. 583, 209 (2002)

    Article  ADS  Google Scholar 

  2. U.W. Heinz, M. Jacob, nucl-th/0002042

  3. M. Gyulassy, L. McLerran, Nucl. Phys. A 750, 30 (2005)

    Article  ADS  Google Scholar 

  4. E.L. Feinberg, Nuovo Cim. A 34, 391 (1976)

    Google Scholar 

  5. E.V. Shuryak, Phys. Lett. B 78, 150 (1978) [Sov. J. Nucl. Phys. 28, 408 (1978); YAFIA, 28, 796 (1978)]

    Article  ADS  Google Scholar 

  6. T. Peitzmann, M.H. Thoma, Phys. Rept. 364, 175 (2002)

    Article  ADS  Google Scholar 

  7. F. Arleo et al., in “CERN Yellow Report on Hard Probes in Heavy Ion Collisions at the LHC”; hep-ph/0311131

  8. C. Gale, K.L. Haglin, in Quark Gluon Plasma, Vol 3, ed. by R.C. Hwa, X.N. Wang (World Scientific, Singapore), [hep-ph/0306098]

  9. WA98 Collaboration, M.M. Aggarwal et al., Phys. Rev. Lett. 85, 3595 (2000)

    Article  Google Scholar 

  10. D.K. Srivastava, B. Sinha, Phys. Rev. C 64, 034902 (2001); D.K. Srivastava, Pramana 57, 235 (2001)

    Article  ADS  Google Scholar 

  11. J.-e. Alam, S. Sarkar, T. Hatsuda, T.K. Nayak, B. Sinha, Phys. Rev. C 63, 021901 (2001)

    Article  ADS  Google Scholar 

  12. D.Y. Peressounko, Y.E. Pokrovsky, Nucl. Phys. A 624, 738 (1997); Nucl. Phys. A 669, 196 (2000); hep-ph/0009025

    Article  ADS  Google Scholar 

  13. F.D. Steffen, M.H. Thoma, Phys. Lett. B 510, 98 (2001)

    Article  ADS  Google Scholar 

  14. P. Huovinen, P.V. Ruuskanen, S.S. Rasanen, Phys. Lett. B 535, 109 (2002); S.S. Rasanen, Nucl. Phys. A 715, 717 (2003); H. Niemi, S.S. Rasanen, P.V. Ruuskanen in [7]

    Article  ADS  Google Scholar 

  15. D. d’Enterria, Phys. Lett. B 596, 32 (2004)

    Article  ADS  Google Scholar 

  16. P. Aurenche, M. Fontannaz, J.P. Guillet, B.A. Kniehl, E. Pilon, M. Werlen, Eur. Phys. J. C 9 107 (1999)

    Google Scholar 

  17. C.Y. Wong, H. Wang, Phys. Rev. C 58, 376 (1998)

    Article  ADS  Google Scholar 

  18. L. Apanasevich et al., Phys. Rev. D 63, 014009 (2001)

    Article  ADS  Google Scholar 

  19. J.W. Cronin et al., Phys. Rev. D 11, 3105 (1975); D. Antreasyan et al., Phys. Rev. D 19, 764 (1979)

    Article  ADS  Google Scholar 

  20. A. Dumitru, N. Hammon, hep-ph/9807260; A. Dumitru, L. Frankfurt, L. Gerland, H. Stocker, M. Strikman, Phys. Rev. C 64, 054909 (2001)

    Article  ADS  Google Scholar 

  21. S. Jeon, J. Jalilian-Marian, I. Sarcevic, Nucl. Phys. A 715, 795 (2003)

    Article  ADS  Google Scholar 

  22. G. Papp, G.I. Fai, P. Levai, hep-ph/9904503

  23. PHENIX Collaboration, J. Frantz, J. Phys G 30, S1003 (2004); PHENIX Collaboration, S.S. Adler et al., Phys. Rev. Lett. 94, 232301 (2005)

    Google Scholar 

  24. PHENIX Collaboration, K. Okada, Proceed. SPIN’04 [hep-ex/0501066]; PHENIX Collaboration, S.S. Adler et al., Phys. Rev. D 71, 071102 (2005)

    Article  Google Scholar 

  25. PHENIX Collaboration, S.S. Adler et al., Phys. Rev. Lett. 91, 241803 (2003)

    Article  Google Scholar 

  26. PHENIX Collaboration, S.S. Adler et al., Phys. Rev. Lett. 91, 072303 (2003); PHENIX Collaboration, H. Buesching, nucl-ex/0410002

    Article  Google Scholar 

  27. P.F. Kolb, U. Heinz, in Quark Gluon Plasma, Vol 3, ed. by R.C. Hwa, X.N. Wang, (World Scientific, Singapore); [nucl-th/0305084], and refs. therein.

  28. D. Teaney, J. Lauret, E.V. Shuryak, nucl-th/0110037

  29. T. Hirano, K. Tsuda, Phys. Rev. C 66, 054905 (2002); T. Hirano, Y. Nara, Phys. Rev. C 69, 034908 (2004)

    Article  ADS  Google Scholar 

  30. J.D. Bjorken, Phys. Rev. D 27, 140 (1983)

    Article  ADS  Google Scholar 

  31. BRAHMS Collaboration, I.G. Bearden et al., Phys. Rev. Lett. 94, 162301 (2005); BRAHMS Collaboration, I. Arsene et al.,Phys. Rev. C 72, 014908 (2005)

    Article  Google Scholar 

  32. K.J. Eskola, K. Kajantie, P.V. Ruuskanen, Eur. Phys. J. C 1, 627 (1998)

    Article  ADS  Google Scholar 

  33. B. Mohanty and J.-e. Alam, Phys. Rev. C 68, 064903 (2003)

    Article  ADS  Google Scholar 

  34. R.W. MacCormack, A.J. Paullay, Computers and Fluids, Vol. 2 (Pergamon, Oxford 1974)

  35. P. Braun-Munzinger, K. Redlich, J. Stachel, in Quark Gluon Plasma., Vol 3, ed. by R.C. Hwa, X.N. Wang, (World Scientific, Singapore), [nucl-th/0304013]

  36. A. Andronic, P. Braun-Munzinger, J. Stachel, nucl-th/0511071

  37. F. Cooper, G. Frye, Phys. Rev. D 10, 186 (1974)

    Article  ADS  Google Scholar 

  38. Particle Data Group Collaboration, K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002)

    Article  Google Scholar 

  39. B. Hahn, D.G. Ravenhall, R. Hofstadter, Phys. Rev. 101, 1131 (1956)

    Article  ADS  Google Scholar 

  40. P.F. Kolb, U.W. Heinz, P. Huovinen, K.J. Eskola,K. Tuominen, Nucl. Phys. A 696, 197 (2001)

    Article  ADS  Google Scholar 

  41. PHENIX Collaboration, S.S. Adler et al., Phys. Rev. C 71, 034908 (2005) [Erratum-ibid. C 71, 049901 (2005)]

    Article  Google Scholar 

  42. STAR Collaboration, T.S. Ullrich, Heavy Ion Phys. 21, 143 (2004)

    Google Scholar 

  43. PHOBOS collaboration, B.B. Back et al., Nucl. Phys. A 715, 65 (2003)

    Article  ADS  Google Scholar 

  44. BRAHMS Collaboration, I.G. Bearden et al., Phys. Rev. Lett. 88, 202301 (2002)

    Article  Google Scholar 

  45. F. Aversa et al., Nucl. Phys. B 327, 105 (1989); B. Jager et al., Phys. Rev. D 67, 054005 (2003); W. Vogelsang, private communication (NLO spectra have been computed with CTEQ6 PDFs, KKP FFs, and scales set to the hadron pT).

    Article  Google Scholar 

  46. N. Hammon, A. Dumitru, H. Stoecker, W. Greiner, Phys. Rev. C 57, 3292 (1998)

    Article  ADS  Google Scholar 

  47. S.A. Bass, B. Muller, D.K. Srivastava, Phys. Rev. Lett. 90, 082301 (2003)

    Article  ADS  Google Scholar 

  48. T. Renk, S.A. Bass, D.K. Srivastava, nucl-th/0505059

  49. J. Berges, S. Borsanyi, C. Wetterich, Phys. Rev. Lett. 93, 142002 (2004)

    Article  ADS  Google Scholar 

  50. P. Arnold, J. Lenaghan, G.D. Moore, L.G. Yaffe, nucl-th/0409068

  51. P.F. Kolb, R. Rapp, Phys. Rev. C 67, 044903 (2003)

    Article  ADS  Google Scholar 

  52. PHENIX Collaboration, S.S. Adler et al., Phys. Rev. C 69, 034909 (2004)

    Article  Google Scholar 

  53. STAR Collaboration, J. Adams et al., Phys. Rev. Lett. 92, 112301 (2004)

    Article  Google Scholar 

  54. STAR Collaboration, H. Caines, J. Phys G 31, S101 (2005); STAR Collaboration, O. Barannikova, nucl-ex/0408022 and private communication

  55. PHOBOS Collaboration, B.B. Back et al., Phys. Rev. C 70, 051901(R) (2004)

    Article  Google Scholar 

  56. PHENIX Collaboration, S.S. Adler et al., Phys. Rev. Lett. 91, 072301 (2003)

    Article  Google Scholar 

  57. STAR Collaboration, J. Adams et al., Phys. Rev. Lett. 91, 172302 (2003)

    Article  Google Scholar 

  58. PHENIX Collaboration, K. Adcox et al., Phys. Rev. Lett. 88, 242301 (2002); PHENIX Collaboration, S.S. Adler et al., Phys. Rev. Lett. 91, 172301 (2003)

    Article  Google Scholar 

  59. R.J. Fries, J. Phys G 30, S853 (2004) and refs. therein

  60. L.E. Gordon, W. Vogelsang, Phys. Rev. D 48, 3136 (1993); Phys. Rev. D 50, 1901 (1994); W. Vogelsang, private communication; also P. Aurenche et al., Phys. Lett. B 140, 87 (1984); Nucl. Phys. B 297, 661 (1988)

    Article  ADS  Google Scholar 

  61. S. Kretzer, H.L. Lai, F.I. Olness, W.K. Tung, Phys. Rev. D 69, 114005 (2004)

    Article  ADS  Google Scholar 

  62. M. Gluck, E. Reya, A. Vogt, Phys. Rev. D 48, 116 (1993) [Erratum-ibid. D 51, 1427 (1995)]

    Article  ADS  Google Scholar 

  63. J. Jalilian-Marian, K. Orginos, I. Sarcevic, Phys. Rev. C 63, 041901 (2001)

    Article  ADS  Google Scholar 

  64. PHENIX Collaboration, S. Bathe, nucl-ex/0511042, Quark Matter’05, Budapest, August 2005

  65. F. Arleo, hep-ph/0406291

  66. S. Turbide, C. Gale, S. Jeon, G.D. Moore, Phys. Rev. C 72, 014906 (2005)

    Article  ADS  Google Scholar 

  67. D. d’Enterria, J. Phys G 31, S491 (2005)

  68. B.G. Zakharov, JETP Lett. 80, 1 (2004) [Pisma Zh. Eksp. Teor. Fiz. 80, 3 (2004)]

    Article  ADS  Google Scholar 

  69. P. Arnold, G.D. Moore, L.G. Yaffe, JHEP 0112, 009 (2001)

    Article  ADS  Google Scholar 

  70. C.T. Traxler, H. Vija, M.H. Thoma, Phys. Lett. B 346, 329 (1995)

    Article  ADS  Google Scholar 

  71. F. Gelis, H. Niemi, P.V. Ruuskanen, S.S. Rasanen, J. Phys G 30, S1031 (2004)

  72. S. Turbide, R. Rapp, C. Gale, Phys. Rev. C 69, 014903 (2004)

    Article  ADS  Google Scholar 

  73. O. Kaczmarek, F. Karsch, F. Zantow, P. Petreczky, Phys. Rev. D 70, 074505 (2004)

    Article  ADS  Google Scholar 

  74. R.J. Fries, B. Muller, D.K. Srivastava, Phys. Rev. Lett. 90, 132301 (2003)

    Article  ADS  Google Scholar 

  75. R.J. Fries, B. Muller, D.K. Srivastava, nucl-th/0507018

  76. C. Albajar et al. [UA1 Collaboration], Phys. Lett. B 209, 397 (1988)

    Article  Google Scholar 

  77. F. Arleo, hep-ph/0601075

  78. J.-e. Alam, J.K. Nayak, P. Roy, A.K. Dutt-Mazumder, B. Sinha, nucl-th/0508043

  79. PHENIX Collaboration, Y. Akiba, nucl-ex/0510008, Quark Matter’05, Budapest, August 2005

  80. B. Muller, K. Rajagopal, Eur. Phys. J. C 43, 15 (2005)

    Article  ADS  Google Scholar 

  81. D. d’Enterria, D. Peressounko, in preparation

  82. See e.g. C.Y. Wong, Introduction to high-energy heavy ion collisions (World Scientific, Singapore 1994). Note that the relation s=4ζ(4)/ζ(3)ρ≈3.6ρ commonly found in the literature refers to an ideal gas of bosons. For an ideal gas of quarks and gluons (with NB,F bosons and fermions), the effective number of degrees of freedom for ρ (geff=NB+3/4·NF) and for ε (geff=NB+7/8·NF, which “propagate” to the entropy density via: s=(ε+P)/3) are slightly different. Thus, the right expression is s≈4ρ.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. d’Enterria.

Additional information

PACS

12.38.Mh, 24.10.Nz, 25.75.-q, 25.75.Nq

Rights and permissions

Reprints and permissions

About this article

Cite this article

d’Enterria, D., Peressounko, D. Probing the QCD equation of state with thermal photons in nucleus–nucleus collisions at RHIC. Eur. Phys. J. C 46, 451–464 (2006). https://doi.org/10.1140/epjc/s2006-02504-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2006-02504-0

Keywords

Navigation