Skip to main content
Log in

Finite-size effects and scaling for the thermal QCD deconfinementphase transition within the exact color-singlet partition function

  • Theoretical Physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract.

We study the finite-size effects for the thermal quantum chromodynamics (QCD) deconfinement phase transition, and use a numerical finite-size scaling analysis to extract the scaling exponents characterizing its scaling behavior when approaching the thermodynamic limit \(\left(V\longrightarrow \infty \right) \). For this, we use a simple model of coexistence of hadronic gas and color-singlet quark gluon plasma (QGP) phases in a finite volume. The color-singlet partition function of the QGP cannot be exactly calculated and is usually derived within the saddle-point approximation. When we try to do calculations with such an approximate color-singlet partition function, a problem arises in the limit of small temperatures and/or volumes \(VT^{3} < < 1\), requiring additional approximations if we want to carry out calculations. We propose in this work a method for an accurate calculation of any quantity of the finite system, without any approximation. By probing the behavior of some useful thermodynamic response functions on the whole range of temperature, it turns out that, in a finite-size system, all singularities in the thermodynamic limit are smeared out and the transition point is shifted away. A numerical finite-size scaling (FSS) analysis of the obtained data allows us to determine the scaling exponents of the QCD deconfinement phase transition. Our results expressing the equality between their values and the space dimensionality is a consequence of the singularity characterizing a first-order phase transition and agree very well with the predictions of other FSS theoretical approaches to a first-order phase transition and with the results of calculations using Monte Carlo methods in both lattice QCD and statistical physics models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.N. Yang, T.D. Lee, Phys. Rev. 87, 404 (1952); Phys. Rev. 87, 410 (1952)

    Article  Google Scholar 

  2. J. Imry, Phys. Rev. B 21, 2042 (1980)

    Article  Google Scholar 

  3. K. Binder, D.P. Landau, Phys. Rev. B 30, 1477 (1984)

    Article  Google Scholar 

  4. C. Spieles, H. Stöcker, C. Greiner, Phys. Rev. C 57, 908 (1998)

    Article  Google Scholar 

  5. A. Chodos et al. , Phys. Rev. D 9, 3471 (1974); J. Cleymans, R.V. Gavai, E. Suhonen, Phys. Rep. 130, 217 (1986)

    Article  Google Scholar 

  6. D.P. Landau, R.H. Swendsen, Phys. Rev. Lett. 46 , 1437 (1981); F.R. Brown et al. , Phys. Rev. Lett. 61, 2058 (1988); P. Bacilieri et al. , Phys. Rev. Lett. 61, 1545 (1988); J.F. McCarthy, Indiana University Preprint IUHET 164 (1989); M. Fukugita et al. , Phys. Rev. Lett. 63, 1768 (1989); P. Bacilieri et al. , Phys. Lett. B 220, 607 (1989); R.V. Gavai, F. Karsch, B. Petersson, Nucl. Phys. B 322, 738 (1989); M. Fukugita, Phys. Rev. Lett. 63, 13 (1989); M. Fukugita et al. , Nucl. Phys. Proc. Suppl. 17, 204 (1990); S. Gupta et al. , Nucl. Phys. B 329, 263 (1990); M. Fukugita et al. , J. Phys. A 23, L561-L566 (1990)

    Article  Google Scholar 

  7. M. Fukugita, Nucl. Phys. Proc. Suppl. 9, 291 (1989)

    Article  Google Scholar 

  8. N.A. Alves et al. , Phys. Rev. Lett. 64, 3107 (1990)

    Article  PubMed  Google Scholar 

  9. H. Meyer-Ortmanns, Rev. Mod. Phys. 68, 473 (1996)

    Article  Google Scholar 

  10. F. Karsch, Nucl. Phys. A 590, 367c-382c (1995); Nucl. Phys. A 698, 199c-208c (2002); F. Karsch et al. , Nucl. Phys. (Proc. Suppl.) B 94, 411-414 (2001); Nucl. Phys. B 605, 579-599 (2001)

    Article  Google Scholar 

  11. M. Fukugita, RIFP-703 (June 1987); M. Fukugita et al. , Phys. Rev. Lett. 58, 2515 (1987); UTHEP-168 (August 1987); Phys. Rev. Lett. 60, 178 (1988); M. Fukugita, Nucl. Phys. Proc. Suppl. 4, 105 (1988), M. Fukugita, A. Ukawa, Phys. Rev. D 38, 1971 (1988); R.V. Gavai et al. , Phys. Lett. B 200, 137 (1988); F.R. Brown et al. , Phys. Rev. Lett. 65, 2491 (1990); S. Aoki et al. (JLQCD Coll.), Nucl. Phys. B 63A-C, 403 (1998), 60A, 188 (1998); B. Lucini et al. , Phys. Lett. B 545, 197 (2002); P. Cea et al. , Nucl. Phys. (Proc. Suppl.) B 129-130, 751 (2004)

    Article  PubMed  Google Scholar 

  12. K. Redlich, L. Turko, Z. Phys. C 5, 201 (1980); L.Turko, Phys. Lett. B 104, 153 (1981)

    Article  Google Scholar 

  13. H.-Th. Elze, W. Greiner, J. Rafelski, Phys. Lett. B 124, 515 (1983); Z. Phys. C 24, 361 (1984); H.-Th. Elze, W. Greiner, Phys. Lett. B 179, 385 (1986)

    Article  Google Scholar 

  14. A. Tounsi, J. Letessier, J. Rafelski, hep-ph/9811290

  15. M.G. Mustafa, D.K. Srivastava, B. Sinha, Eur. Phys. J. C 5, 711 (1998); nucl-th/9712014

    Article  Google Scholar 

  16. J. Madsen, D.M. Jensen, M.B. Christiansen, Phys. Rev. C 53, 1883 (1996)

    Article  Google Scholar 

  17. G. Yezza, Magister thesis in theoretical physics, Ecole Normale Supérieure, Kouba, Algiers (March 2002)

  18. M.E. Fisher, A.N. Berker, Phys. Rev. B 26, 2507 (1982).

    Article  Google Scholar 

  19. M.S. Challa, D.P. Landau, K. Binder, Phys. Rev. B 34, 1841 (1986)

    Article  Google Scholar 

  20. K. Binder, D.W. Heermann, Monte Carlo Simulations in Statistical Physics, (Springer-Verlag, 1988, 2nd ed. 2002)

  21. V. Privman, M.E. Fischer, J. Stat. Phys. 33(2), 385 (1983)

    Article  Google Scholar 

  22. M. Fukugita et al. , KEK-TH-233 (1989)

  23. M. Henkel, Conformal Invariance and Critical Phenomena, (Springer-Verlag, 1999)

  24. K. Binder, Rep. Prog. Phys. 60, 487 (1997)

    Article  Google Scholar 

  25. D.P. Landau, K. Binder, A Guide to Monte Carlo Simulation in Statistical Physics, (Cambridge University Press, 2000)

  26. J.P. Blaizot, J.Y. Ollitraut, Phys. Rev. D 36, 916 (1987)

    Article  Google Scholar 

  27. K. Binder, Phys. Rev. Lett. 47, 693 (1981); Z. Phys. B 43, 119 (1981)

    Article  Google Scholar 

  28. M. Ladrem, A. Ait-El-Djoudi, G. Yezza, communication at the international conference 'Quark Confinement and the Hadron spectrum', held in Gargnano, Italy, 10-14 September 2002

  29. M.N. Barber, in Phase Transitions and Critical Phenomena, Vol. 8, edited by C.Domb, J.L. Lebowitz (Academic, New York, 1983) 145

  30. K. Binder, Ferroelectrics 73, 43 (1987); in Computational Methods in Field Theory, H. Gausterer, C.B. Lang, (Eds. Springer, Berlin 1992) 59

    Google Scholar 

  31. W. Janke, Phys. Rev. B 47, 14757 (1993)

    Article  Google Scholar 

  32. K. Vollmayr, J.D. Reger, M. Scheucher, K. Binder, Z. Phys. B 91, 113 (1993)

    Article  Google Scholar 

  33. J.G. Brankov, D.M. Danchev, N.S. Tonchev, Theory of Critical Phenomena in Finite-Size Systems - Scaling and Quantum Effects, (World Scientific, 2000)

  34. C. Borgs, R. Kotecky, J. Stat. Phys. 61, 79 (1991); C. Borgs, R. Kotecky, S. Miracle-Solé, J. Stat. Phys. 62, 529 (1991)

    Article  Google Scholar 

  35. B. Beinlich, F. Karsch, E. Laermann, A. Peikert, Eur. Phys. J. C 6, 133 (1999)

    Article  Google Scholar 

  36. K. Bitar et al. , Nucl. Phys. B 337, 245 (1990)

    Article  Google Scholar 

  37. R.V. Gavai, Nucl. Phys. Proc. Suppl. 106, 480 (2002); Nucl. Phys. B 633, 127 (2002)

    Article  Google Scholar 

  38. M. Mathur, R.V. Gavai, Nucl. Phys. B 448, 399 (1995)

    Article  Google Scholar 

  39. D. Loison, K.D. Schotte, Eur. Phys. J. B 5, 735 (1998); B 14, 125 (2000)

    Google Scholar 

  40. O. Dillmann, W. Janke, K. Binder, J. Stat. Phys. 92, 1/2, 57 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ladrem.

Additional information

Received: 11 January 2005, Revised: 7 July 2005, Published online: 30 August 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladrem, M., Ait-El-Djoudi, A. Finite-size effects and scaling for the thermal QCD deconfinementphase transition within the exact color-singlet partition function. Eur. Phys. J. C 44, 257–265 (2005). https://doi.org/10.1140/epjc/s2005-02357-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2005-02357-y

Keywords

Navigation