Skip to main content

Advertisement

Log in

Empirical formulas for the fermion spectra and Yukawa matrices

  • theoretical physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract.

We present empirical relations that connect the dimensionless ratios of low energy fermion masses for the charged lepton, up-type quark and down-type quark sectors and the CKM elements: \( \left\lvert V_{us}\right\rvert \approx \left[ \frac{m_{d}}{m_{s}} \right]^{\frac{1}{2}} \approx \left[ \frac{m_{u}}{m_{c}} \right]^{\frac{1}{4}} \approx 3 \left[ \frac{m_{e}}{m_{\mu}} \right]^{\frac{1}{2}}\) and \( \frac{1}{2} \left\lvert \frac{V_{cb}}{V_{us}}\right\rvert \approx \left[ \frac{m_{s}^{3}}{m_{b}^{2}m_{d}} \right]^{\frac{1}{2}} \approx \left[ \frac{m_{c}^{3}}{m_{t}^{2}m_{u}} \right]^{\frac{1}{2}} \approx \frac{1}{9} \left[ \frac{m_{\mu}^{3}}{m_{\tau}^{2}m_{e}} \right]^{\frac{1}{2}}\). Explaining these relations from first principles imposes strong constraints on the search for the theory of flavor. We present a simple set of normalized Yukawa matrices, with only two real parameters and one complex phase, which accounts with precision for these mass relations and for the CKM matrix elements and also suggests a simpler parametrization of the CKM matrix. The proposed Yukawa matrices accommodate the measured CP-violation, giving a particular relation between standard model CP-violating phases, \(\beta = {\mathrm {Arg}} \left[ 2 - \mathrm {e}^{-\mathrm i\gamma} \right]\). According to this relation the measured value of \(\beta\) is close to the maximum value that can be reached, \(\beta_{\mathrm {max}} = 30^{\circ}\) for \(\gamma = 60^{\circ}\). Finally, the particular mass relations between the quark and charged lepton sectors find their simplest explanation in the context of grand unified models through the use of the Georgi-Jarlskog factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Gatto, G. Sartori, M. Tonin, Phys. Lett. B 28, 128 (1968); N. Cabibbo, L. Maiani, Phys. Lett. B 28, 131 (1968); R.J. Oakes, Phys. Lett. B 29, 683 (1969)

    Article  Google Scholar 

  2. These are some useful reviews of the history of the theories of flavor that focus especially on supersymmetric grand unified theories: L.J. Hall, hep-ph/9303217; S. Raby, hep-ph/9501349; Z. Berezhiani, hep-ph/9602325; M.C. Chen, K.T. Mahanthappa, Int. J. Mod. Phys. A 18, 5819 (2003)

    Article  Google Scholar 

  3. S. Weinberg, Trans. New York Acad. Sci. 38, 185 (1977); H. Fritzsch, Phys. Lett. B 70, 436 (1977); F. Wilczek, A. Zee, Phys. Lett. B 70, 418 (1977) [Erratum B 72, 504 (1978)]

    Google Scholar 

  4. C.D. Froggatt, H.B. Nielsen, Nucl. Phys. B 147, 277 (1979)

    Article  Google Scholar 

  5. H. Georgi, C. Jarlskog, Phys. Lett. B 86, 297 (1979)

    Article  Google Scholar 

  6. K.S. Babu, Q. Shafi, Phys. Rev. D 47, 5004 (1993)

    Article  Google Scholar 

  7. M. Battaglia et al. , hep-ph/0304132

  8. K. Hagiwara et al. [Particle Data Group Collaboration], Phys. Rev. D 66, 010001 (2002); 2003 off-year partial update for the 2004 edition available on the PDG WWW pages (URL: http://pdg.lbl.gov/)

    Article  Google Scholar 

  9. A. Hocker, H. Lacker, S. Laplace, F. Le Diberder, Eur. Phys. J. C 21, 225 (2001). For updates and new results obtained using the program CKMFitter visit the web page http://www.slac.stanford.edu/xorg/ckmfitter/

    Article  Google Scholar 

  10. H. Georgi, D.V. Nanopoulos, Nucl. Phys. B 159, 16 (1979)

    Article  Google Scholar 

  11. J. Ferrandis, N. Haba, hep-ph/0404077

  12. W. Buchmuller, D. Wyler, Phys. Lett. B 121, 321 (1983); A.B. Lahanas, D. Wyler, Phys. Lett. B 122, 258 (1983)

    Article  Google Scholar 

  13. R. Barbieri, G.R. Dvali, L.J. Hall, Phys. Lett. B 377, 76 (1996); R. Barbieri, L.J. Hall, S. Raby, A. Romanino, Nucl. Phys. B 493, 3 (1997); R. Barbieri, L.J. Hall, A. Romanino, Phys. Lett. B 401, 47 (1997); R. Barbieri, L. Giusti, L.J. Hall, A. Romanino, Nucl. Phys. B 550, 32 (1999)

    Article  Google Scholar 

  14. J. Ferrandis, hep-ph/0404068

  15. J. Gasser, H. Leutwyler, Phys. Rept. 87, 77 (1982); H. Fusaoka, Y. Koide, Phys. Rev. D 57, 3986 (1998)

    Article  Google Scholar 

  16. A.H. Hoang, Phys. Rev. D 61, 034005 (2000); K. Melnikov, A. Yelkhovsky, Phys. Rev. D 59, 114009 (1999); M. Beneke, A. Signer, Phys. Lett. B 471, 233 (1999); A.A. Penin, A.A. Pivovarov, Nucl. Phys. B 549, 217 (1999); G. Rodrigo, A. Santamaria, M.S. Bilenky, Phys. Rev. Lett. 79, 193 (1997)

    Article  Google Scholar 

  17. M. Eidemuller, Phys. Rev. D 67, 113002 (2003); J.H. Kuhn, M. Steinhauser, Nucl. Phys. B 619, 588 (2001) [Erratum B 640, 415 (2002)]; M. Eidemuller, M. Jamin, Phys. Lett. B 498, 203 (2001)

    Article  Google Scholar 

  18. D. Becirevic, V. Lubicz, G. Martinelli, Phys. Lett. B 524, 115 (2002)

    Article  Google Scholar 

  19. M. Jamin, J.A. Oller, A. Pich, Eur. Phys. J. C 24, 237 (2002)

    Google Scholar 

  20. E. Gamiz, M. Jamin, A. Pich, J. Prades, F. Schwab, JHEP 0301, 060 (2003)

    Article  Google Scholar 

  21. C. Aubin et al. [HPQCD Collaboration], hep-lat/0405022

  22. R. Tarrach, Nucl. Phys. B 183, 384 (1981)

    Article  Google Scholar 

  23. N. Gray, D.J. Broadhurst, W. Grafe, K. Schilcher, Z. Phys. C 48, 673 (1990)

    Google Scholar 

  24. J. Fleischer, F. Jegerlehner, O.V. Tarasov, O.L. Veretin, Nucl. Phys. B 539, 671 (1999) [Erratum B 571, 511 () ]

    Article  Google Scholar 

  25. K.G. Chetyrkin, M. Steinhauser, Nucl. Phys. B 573, 617 (2000)

    Article  Google Scholar 

  26. K.G. Chetyrkin, J.H. Kuhn, M. Steinhauser, Comp. Phys. Comm. 133, 43 (2000)

    Article  MATH  Google Scholar 

  27. K. Melnikov, T. v. Ritbergen, Phys. Lett. B 482, 99 (2000)

    Article  Google Scholar 

  28. O.V. Tarasov, A.A. Vladimirov, A.Y. Zharkov, Phys. Lett. B 93, 429 (1980)

    Article  Google Scholar 

  29. K.G. Chetyrkin, Phys. Lett. B 404, 161 (1997)

    Article  Google Scholar 

  30. J.A. Vermaseren, S.A. Larin, T. van Ritbergen, Phys. Lett. B 405, 327 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ferrandis.

Additional information

Received: 31 July 2004, Revised: 22 September 2004, Published online: 9 November 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrandis, J. Empirical formulas for the fermion spectra and Yukawa matrices. Eur. Phys. J. C 38, 161–175 (2004). https://doi.org/10.1140/epjc/s2004-02032-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2004-02032-y

Keywords

Navigation