Skip to main content
Log in

A phenomenological analysis of the longitudinal structure function at small x and low Q 2

  • theoretical physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract.

The longitudinal structure function in deep-inelastic scattering is one of the observables from which the gluon distribution can be unfolded. Consequently, this observable can be used to constrain the QCD dynamics at small x. In this work we compare the predictions of distinct QCD models with the recent experimental results for F L(x,Q 2) at small x and low Q 2 obtained by the H1 Collaboration. We focus mainly on the color dipole approach, selecting those models which include saturation effects. Such models are suitable at this kinematical region and also resum a wide class of higher-twist contributions to the observables. Therefore, we investigate the influence of these corrections to F L in the present region of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys. Rept. 100, 1 (1983)

    Article  Google Scholar 

  2. A.H. Mueller, J. w. Qiu, Nucl. Phys. B 268, 427 (1986)

    Article  Google Scholar 

  3. A.L. Ayala, M.B. Gay Ducati, E.M. Levin, Nucl. Phys. B 493, 305 (1997); Nucl. Phys. B 511, 355 (1998)

    Article  Google Scholar 

  4. L.D. McLerran, R. Venugopalan, Phys. Rev. D 49, 2233 (1994)

    Article  Google Scholar 

  5. I. Balitsky, Nucl. Phys. B 463, 99 (1996)

    Article  Google Scholar 

  6. Y.V. Kovchegov, Phys. Rev. D 60, 034008 (1999); Phys. Rev. D 61, 074018 (2000)

    Article  Google Scholar 

  7. E. Iancu, A. Leonidov, L. McLerran, Nucl. Phys. A 692, 583 (2001); E. Ferreiro, E. Iancu, A. Leonidov, L. McLerran, Nucl. Phys. A 703, 489 (2002)

    Article  MATH  Google Scholar 

  8. A.L. Ayala Filho, M.B. Gay Ducati, E.M. Levin, Eur. Phys. J. C 8, 115 (1999)

    Article  Google Scholar 

  9. A.L. Ayala Filho, M.B. Gay Ducati, V.P. Goncalves, Phys. Rev. D 59, 054010 (1999)

    Article  Google Scholar 

  10. K. Golec-Biernat, M. Wüsthoff, Phys. Rev. D 59, 014017 (1999); Phys. Rev. D 60, 114023 (1999)

    Article  Google Scholar 

  11. J. Bartels, K. Golec-Biernat, H. Kowalski, Phys. Rev D 66, 014001 (2002)

    Google Scholar 

  12. H. Kowalski, D. Teaney, Phys. Rev. D 68, 114005 (2003)

    Article  Google Scholar 

  13. C. Marquet, R. Peschanski, Phys. Lett. B 587, 201 (2004)

    Google Scholar 

  14. A.M. Stasto, K. Golec-Biernat, J. Kwiecinski, Phys. Rev. Lett. 86, 596 (2001)

    Google Scholar 

  15. A.C. Caldwell, M.S. Soares, Nucl. Phys. A 696, 125 (2001)

    Article  Google Scholar 

  16. N. Timneanu, J. Kwiecinski, L. Motyka, Eur. Phys. J. C 23, 513 (2002)

    Article  Google Scholar 

  17. C. Brenner Mariotto, M.B. Gay Ducati, M.V.T. Machado, Phys. Rev. D 66, 114013 (2002)

    Article  Google Scholar 

  18. L. Favart, M.V.T. Machado, Eur. Phys. J. C 29, 365 (2003); C 34, 429 (2004)

    Article  Google Scholar 

  19. J.R. Forshaw, G. Kerley, G. Shaw, Phys. Rev. D 60, 074012 (1999); M. McDermott, L. Frankfurt, V. Guzey, M. Strikman, Eur. Phys. J. C 16, 641 (2000); E. Gotsman et al. , J. Phys. G 27, 2297 (2001); A. Donnachie, H.G. Dosch, Phys. Rev. D 65, 014019 (2002); M.B. Gay Ducati, M.V.T. Machado, Phys. Rev. D 65, 114019 (2002); M.A. Betemps, M.B. Gay Ducati, M.V.T. Machado, Phys. Rev. D 66, 014018 (2002)

    Article  Google Scholar 

  20. V.P. Goncalves, M.V.T. Machado, Phys. Rev. Lett. 91, 202002 (2003)

    Article  Google Scholar 

  21. E. Iancu, K. Itakura, S. Munier, Phys. Lett. B 590, 199 (2004)

    Article  Google Scholar 

  22. J.R. Forshaw, R. Sandapen, G. Shaw, Phys. Rev. D 69, 094013 (2004)

    Article  Google Scholar 

  23. J.R. Forshaw, R. Sandapen, G. Shaw, Phys. Lett. B 594, 283 (2004)

    Article  Google Scholar 

  24. J. Jalilian-Marian, Nucl. Phys. A 739, 319 (2004); nucl-th/0402080

    Article  Google Scholar 

  25. E. Iancu, R. Venugopalan, hep-ph/0303204

  26. J. Bartels, K. Golec-Biernat, K. Peters, Eur. Phys. J. C 17, 121 (2000)

    Article  Google Scholar 

  27. E. Gotsman, E. Levin, U. Maor, L.D. McLerran, K. Tuchin, Nucl. Phys. A 683, 383 (2001); Phys. Lett. B 506, 289 (2001)

    Article  Google Scholar 

  28. E.M. Lobodzinska, Acta Phys. Polon. B 35, 223 (2004); hep-ph/0311180

    Google Scholar 

  29. L. Favart et al. , Z. Phys. C 72, 425 (1996)

    Article  Google Scholar 

  30. R.S. Thorne, Phys. Lett. B 418, 371 (1998)

    Article  Google Scholar 

  31. B. Badelek, J. Kwiecinski, A. Stasto, Z. Phys. C 74, 297 (1997)

    Article  Google Scholar 

  32. A.V. Kotikov, A.V. Lipatov, N.P. Zotov, Eur. Phys. J. C 27, 219 (2003); hep-ph/0403135

    Google Scholar 

  33. A.Y. Illarionov, A.V. Kotikov, G. Parente Bermudez, hep-ph/0402173

  34. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Phys. Lett. B 531, 216 (2002); Eur. Phys. J. C 23, 73 (2002)

    Article  Google Scholar 

  35. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P. Nadolsky, W.K. Tung, JHEP 0207, 012 (2002)

    Article  Google Scholar 

  36. R.S. Thorne, Int. J. Mod. Phys. A 19, 1074 (2004) [hep-ph/0309343]

    Article  Google Scholar 

  37. R.S. Thorne, Phys. Rev. D 64, 074005 (2001)

    Article  Google Scholar 

  38. S. Alekhin, Phys. Rev. D 68, 014002 (2003); D 63, 094022 (2001)

    Article  Google Scholar 

  39. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Phys. Lett. B 443, 301 (1998)

    Article  Google Scholar 

  40. G. Altarelli, G. Martinelli, Phys. Lett. B 76, 89 (1978)

    Article  Google Scholar 

  41. A.M. Cooper-Sarkar, G. Ingelman, K.R. Long, R.G. Roberts, D.H. Saxon, Z. Phys. C 39, 281 (1988)

    Google Scholar 

  42. M. Gluck, E. Reya, A. Vogt, Eur. Phys. J. C 5, 461 (1998)

    Article  Google Scholar 

  43. N.N. Nikolaev, B.G. Zakharov, Z. Phys. C 49, 607 (1991); Z. Phys. C 53, 331 (1992); A.H. Mueller, Nucl. Phys. B 415, 373 (1994); A.H. Mueller, B. Patel, Nucl. Phys. B 425, 471 (1994)

    Google Scholar 

  44. E. Iancu, K. Itakura, L. McLerran, Nucl. Phys. A 708, 327 (2002)

    Article  MATH  Google Scholar 

  45. S. Munier, S. Wallon, Eur. Phys. J. C 30, 359 (2003)

    Article  Google Scholar 

  46. A.H. Mueller, D.N. Triantafyllopoulos, Nucl. Phys. B 640, 331 (2002); D.N. Triantafyllopoulos, Nucl. Phys. B 648, 293 (2003); A.H. Mueller, Nucl. Phys. A 724, 223 (2003)

    Article  MATH  Google Scholar 

  47. E. Levin, K. Tuchin, Nucl. Phys. B 573, 833 (2000)

    Article  Google Scholar 

  48. E. Gotsman, E. Levin, M. Lublinsky, U. Maor, Eur. Phys. J. C 27, 411 (2003)

    Google Scholar 

  49. K.J. Eskola, H. Honkanen, V.J. Kolhinen, J. w. Qiu, C.A. Salgado, Nucl. Phys. B 660, 211 (2003)

    Article  Google Scholar 

  50. C. Adloff et al. [H1 Collaboration], Eur. Phys. J. C 21, 33 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Received: 23 June 2004, Revised: 13 July 2004, Published online: 14 September 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonçalves, V.P., Machado, M.V.T. A phenomenological analysis of the longitudinal structure function at small x and low Q 2 . Eur. Phys. J. C 37, 299–305 (2004). https://doi.org/10.1140/epjc/s2004-01998-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2004-01998-6

Keywords

Navigation