Skip to main content
Log in

Spatially dependent quantum interference effects in the detection probability of charged leptons produced in neutrino interactions or weak decay processes

  • theoretical physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract.

Feynman’s path amplitude formulation of quantum mechanics is used to analyse the production of charged leptons from charged current weak interaction processes. For neutrino induced reactions the interference effects predicted are usually called “neutrino oscillations”. Similar effects in the detection of muons from pion decay are here termed “muon oscillations”. Processes considered include pion decay (at rest and in flight), and muon decay and nuclear \(\beta\)-decay at rest. In all cases studied, a neutrino oscillation phase different from the conventionally used one is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Pontecorvo, JETP 33, 599 (1957), [Sov. Phys. JETP 6, 429 (1958)]; JETP 34, 247 (1958) [Sov. Phys. JETP 7, 172 (1958)]

    Google Scholar 

  2. S.M. Bilenky, B. Pontecorvo, Phys. Rep. 41, 225 (1978)

    Article  Google Scholar 

  3. S.M. Bilenky, S.T. Petcov, Rev. Mod. Phys. 59, 671 (1987)

    Article  Google Scholar 

  4. Y. Grossman, H.J. Lipkin, Phys. Rev. D 55, 2760 (1997)

    Article  Google Scholar 

  5. S. De Leo, G. Ducati, P. Rotelli, Mod. Phys. Lett. A 15, 2057 (2000)

    Article  Google Scholar 

  6. R.G. Winter, Lettere al Nuovo Cimento 30, 101 (1981)

    Google Scholar 

  7. R.P. Feynman, Rev. Mod. Phys. 20, 367 (1948)

    Article  Google Scholar 

  8. P.A.M. Dirac, Physikalische Zeitschrift der Sowjetunion Band 3, Heft 1 (1933), reprinted in Selected Papers on Quantum Electrodynamics, edited by J. Schwinger (Dover, New York 1958), p. 312; see also [11], Chapter V, Sect. 32

  9. R.P. Feynman, A.R. Hibbs, Quantum mechanics and path integrals (McGraw Hill, New York 1965); C. Grosche, F. Steiner, Handbook of path integrals, Springer Tracts in Modern Physics (Springer-Verlag, Berlin 1998)

  10. W. Heisenberg, The physical principals of the quantum theory, English translation by C. Eckart, F.C. Hoyt (University of Chicago Press, Chicago 1930), Chapter IV, Sect. 2

  11. P.A.M. Dirac, The principles of quantum mechanics, Fourth edition (O.U.P., London 1958), p. 9

  12. R.P. Feynman, Phys. Rev. 76, 749 (1949)

    Article  MATH  Google Scholar 

  13. S. Mohanty, Covariant Treatment of Flavour Oscillations, hep-ph/9702424

  14. C. Athanassopoulos et al. , Phys. Rev. C 58, 2489 (1998); A. Aguilar et al. , hep-ex/0104049

    Article  Google Scholar 

  15. B. Zeitnitz et al. , Progress in Particle and Nuclear Physics, 40, 169 (1998); J. Kleinfeller, Nucl. Phys. B (Proc. Suppl.) 87, 281 (2000)

    Google Scholar 

  16. Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28, 870 (1962)

    MATH  Google Scholar 

  17. L.I. Schiff, Quantum mechanics, 2nd edition (McGraw Hill, New York 1955), Chapter VIII

  18. J.M.Lévy-Leblond, F. Balibar, Quantics, rudiments of quantum physics (North-Holland, Amsterdam 1990), Chapter V

  19. M. Zralek, Acta. Phys. Polon. B 29, 3925 (1998)

    Google Scholar 

  20. C. Giunti, C.W. Kim, Found. Phys. Lett. 14, 213 (2001)

    Article  Google Scholar 

  21. B. Kayser, Neutrino Physics as Explored by Flavour Change, in Phys. Rev. D 66, 010001 (2002) (Review of Particle Properties)

    Article  Google Scholar 

  22. R.E. Shrock, Phys. Lett. B 96, 159 (1980)

    Article  Google Scholar 

  23. R.E. Shrock, Phys. Rev. D 24, 1232 (1981); D 24, 1275 (1981)

    Article  Google Scholar 

  24. J.H. Field, Lepton Flavour Eigenstates do not Exist if Neutrinos are Massive: “Neutrino Oscillations” Reconsidered, hep-ph/0301231

  25. J.H. Field, Eur. Phys. J. C 30, 305 (2003)

    Article  Google Scholar 

  26. C. Giunti, C.W. Kim, U.W. Lee, Phys. Rev. D 45, 2414 (1992)

    Article  Google Scholar 

  27. V. Gribov, B. Pontecorvo, Phys. Lett. B 28, 493 (1969)

    Article  Google Scholar 

  28. S.M. Bilenky, B. Pontecorvo, Phys. Lett. B 61, 248 (1976)

    Article  Google Scholar 

  29. H. Fritsch, P. Minkowski, Phys. Lett. B 62, 72 (1976)

    Article  Google Scholar 

  30. S.M. Bilenky, B. Pontecorvo, Lettere al Nuovo Cimento 17, 569 (1976)

    Google Scholar 

  31. S.M. Bilenky, B. Pontecorvo, Physics Reports 41, 225 (1978)

    Article  Google Scholar 

  32. See [10], Chapter II

  33. B. Kayser, Phys. Rev. D 24, 110 (1981)

    Article  Google Scholar 

  34. Y.N. Srivastava, A. Widom, E. Sassaroli, Charged Lepton Oscillations, hep-ph/9509261

  35. Y.N. Srivastava, A. Widom, E. Sassaroli, Eur. Phys. J C 2, 769 (1998)

    Article  MATH  Google Scholar 

  36. A.D. Dolgov et al. , Nucl. Phys. B 502, 3 (1997)

    Article  Google Scholar 

  37. Y.N. Srivastava, A. Widom, Of Course Muons can Oscillate, hep-ph/9707268

  38. B. Kayser, L. Stodolsky, Phys. Lett. B 359, 343 (1995)

    Article  Google Scholar 

  39. Y.N. Srivastava, A. Widom, E. Sassaroli, Phys. Lett. B 344, 436 (1995)

    Article  Google Scholar 

  40. Review of Particle Properties, D.E. Groom et al. , Eur. Phys. J C 15, 1 (2000)

    Google Scholar 

  41. S. DeLeo, P. Rotelli, JETP Lett. 76, 56 (2002)

    Article  Google Scholar 

  42. T. Kajita, Y. Totsuka, Rev. Mod. Phys. 73, 85 (2001)

    Article  Google Scholar 

  43. J.N. Bahcall, M.H. Pinsonneault, S. Basu, Astrophys. J 555, 990 (2001)

    Article  Google Scholar 

  44. H.G. Berry, J.L. Subtil, Phys. Rev. Lett. 27, 1103 (1971)

    Article  Google Scholar 

  45. C. Blondel, C. Delsart, F. Dulieu, Phys. Rev. Lett. 77, 3755 (1996)

    Article  Google Scholar 

  46. C. Bracher et al. , Am. J. Phys. 66, 38 (1998)

    Google Scholar 

  47. C. Blondel, S. Berge, C. Delsart, Am. J. Phys. 69, 810 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Received: 3 February 2004, Revised: 20 July 2004, Published online: 14 September 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Field, J.H. Spatially dependent quantum interference effects in the detection probability of charged leptons produced in neutrino interactions or weak decay processes. Eur. Phys. J. C 37, 359–377 (2004). https://doi.org/10.1140/epjc/s2004-01988-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2004-01988-8

Keywords

Navigation