Skip to main content
Log in

Effective action and the quantum equation of motion

  • theoretical physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract.

We carefully analyze the use of the effective action in dynamical problems, in particular the conditions under which the equation \(\frac{\delta \Gamma} {\delta \phi} = 0\) can be used as a quantum equation of motion and illustrate in detail the crucial relation between the asymptotic states involved in the definition of \(\Gamma\) and the initial state of the system. Also, by considering the quantum-mechanical example of a double-well potential, where we can get exact results for the time evolution of the system, we show that an approximation to the effective potential in the quantum equation of motion that correctly describes the dynamical evolution of the system is obtained with the help of the wilsonian RG equation (already at the lowest order of the derivative expansion), while the commonly used one-loop effective potential fails to reproduce the exact results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Jona-Lasinio, Nuovo Cimento 34, 1790 (1964)

    Google Scholar 

  2. R.J. Rivers, Path integral methods in quantum field theory (Cambridge University Press 1987)

  3. Lowell S. Brown, Quantum field theory (Cambridge University Press 1995)

  4. See for instance: J. Zinn-Justin, Quantum field theory of critical phenomena (Oxford Science Publications 1993)

  5. G. Andronico, V. Branchina, D. Zappalá, Phys. Rev. Lett. 88, 178902 (2002)

    Article  Google Scholar 

  6. R. Ramirez, T. López-Ciudad, J.C. Noya, Phys. Rev. Lett. 81, 3303 (1998)

    Article  Google Scholar 

  7. R.H. Brandenberger, Rev. Mod. Phys. 57, 1 (1985)

    Article  Google Scholar 

  8. D. Boyanovsky, H.J. De Vega, R. Holman, Phys. Rev. D 49, 2769 (1994)

    Article  Google Scholar 

  9. F. Cooper, S.-Y. Pi, P. Stancioff, Phys. Rev. D 34, 3831 (1986)

    Article  Google Scholar 

  10. S.-Y. Pi, M. Samiullah, Phys. Rev. D 36, 3128 (1987)

    Article  MathSciNet  Google Scholar 

  11. B. De Witt, The global approach to quantum field theory (Oxford University Press 2003)

  12. J. Schwinger, J. Mat. Phys. 2, 407 (1961)

    MATH  Google Scholar 

  13. P.M. Bakshi, K.T. Mahantappa, J. Mat. Phys. 4, 1 (1963)

    MATH  Google Scholar 

  14. E. Calzetta, B.L.Hu, Phys. Rev. D 15, 495 (1987)

    Article  MathSciNet  Google Scholar 

  15. R. Jackiw, A. Kerman, Phys. Lett. A 71, 158 (1979)

    Article  MathSciNet  Google Scholar 

  16. S. Coleman, Aspects of symmetry (Cambridge University Press 1985), pp. 132-142

  17. K. Symanzik, Commun. Math. Phys. 16, 48 (1970)

    Google Scholar 

  18. T. Curtright, C. Thorn, J. Math. Phys. 25, 541 (1984)

    Article  MathSciNet  Google Scholar 

  19. D.J. Callaway, D.J. Maloof, Phys. Rev. D 27, 406 (1983); D.J. Callaway, Phys. Rev. D 27, 2974 (1983)

    Article  Google Scholar 

  20. V. Branchina, P. Castorina, D. Zappalá, Phys. Rev. D 41, 1948 (1990)

    Article  Google Scholar 

  21. E.J. Weinberg, A. Wu, Phys. Rev. D 36, 2474 (1987)

    Article  MathSciNet  Google Scholar 

  22. R. Fukuda, Prog. Theor. Phys. 56, 258 (1976)

    Google Scholar 

  23. A. Ringwald, C. Wetterich, Nucl. Phys. B 334, 506 (1990)

    Article  Google Scholar 

  24. N. Tetradis, C. Wetterich, Nucl. Phys. B 383, 197 (1992)

    Article  Google Scholar 

  25. J. Alexandre, V. Branchina, J. Polonyi, Phys. Lett. B 445, 351 (1999)

    Article  Google Scholar 

  26. A. Horikoshi, K.-I. Aoki, M. Taniguchi, H. Terao, hep-th/9812050, in Proceedings Workshop on the Exact Renormalization Group, Faro, Portugal, 1998 (World Scientific, Singapore 1999); A.S. Kapoyannis, N. Tetradis, Phys. Lett. A 276, 225 (2000); D. Zappalá, Phys. Lett. A 290, 35 (2001)

    Article  Google Scholar 

  27. The Numerical Algorithms Group Limited (1997), NAG Fortran Library Manual, Mark 18

  28. F. Wegner, A. Houghton, Phys. Rev. A 8, 401 (1973)

    Article  Google Scholar 

  29. A. Hasenfratz, P. Hasenfratz, Nucl. Phys. B 270, 687 (1986)

    Article  Google Scholar 

  30. A. Bonanno, D. Zappalá, Phys. Rev. D 57, 7383 (1998)

    Article  Google Scholar 

  31. A. Bonanno, V. Branchina, H. Mohrbach, D. Zappalá, Phys. Rev. D 60, 065009 (1999); V. Branchina, Phys. Rev. D 62, 065010 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Branchina.

Additional information

Received: 1 April 2004, Published online: 2 July 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Branchina, V., Faivre, H. & Zappalá, D. Effective action and the quantum equation of motion. Eur. Phys. J. C 36, 271–281 (2004). https://doi.org/10.1140/epjc/s2004-01895-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2004-01895-0

Keywords

Navigation