Skip to main content
Log in

Tests of models of color reconnection and a search for glueballs using gluon jets with a rapidity gap

  • experimental physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract.

Gluon jets with a mean energy of 22 GeV and purity of 95% are selected from hadronic Z0 decay events produced in e + e- annihilations. A subsample of these jets is identified which exhibits a large gap in the rapidity distribution of particles within the jet. After imposing the requirement of a rapidity gap, the gluon jet purity is 86%. These jets are observed to demonstrate a high degree of sensitivity to the presence of color reconnection, i.e. higher order QCD processes affecting the underlying color structure. We use our data to test three QCD models which include a simulation of color reconnection: one in the Ariadne Monte Carlo, one in the Herwig Monte Carlo, and the other by Rathsman in the Pythia Monte Carlo. We find the Rathsman and Ariadne color reconnection models can describe our gluon jet measurements only if very large values are used for the cutoff parameters which serve to terminate the parton showers, and that the description of inclusive Z0 data is significantly degraded in this case. We conclude that color reconnection as implemented by these two models is disfavored. The signal from the Herwig color reconnection model is less clear and we do not obtain a definite conclusion concerning this model. In a separate study, we follow recent theoretical suggestions and search for glueball-like objects in the leading part of the gluon jets. No clear evidence is observed for these objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Brandt et al. , Phys. Lett. 12, 57 (1964); E. Fahri, Phys. Rev. Lett. 39, 1587 (1977)

    Google Scholar 

  2. J.D. Bjorken, Phys. Rev. D 47, 101 (1993)

    Article  Google Scholar 

  3. H1 Collab., T. Ahmed et al. , Nucl. Phys. B 429, 477 (1994); ZEUS Collab., M. Derrick et al. , Phys. Lett. B 332, 228 (1994); ZEUS Collab., M. Derrick et al. , Phys. Lett. B 369, 55 (1996)

    Article  Google Scholar 

  4. D0 Collab., S. Abachi et al. , Phys. Rev. Lett. 72, 2332 (1994); CDF Collab., F. Abe et al. , Phys. Rev. Lett. 74, 855 (1995); D0 Collab., B. Abbott et al. , Phys. Lett. B 440, 189 (1998); CDF Collab., T. Affolder et al. , Phys. Rev. Lett. 85, 4215 (2000)

    Article  Google Scholar 

  5. For a recent review, see A.B. Kaidalov, in M. Shifman, B. Ioffe (eds.), At the frontier of particle physics,, vol. 1 (World Scientific, Singapore, 2001), p. 603, e-Print Archive: hep-ph/0103011; for a discussion of the pomeron in the context of rapidity gaps, see A. Hebecker, Phys. Rep. 331, 1 (2000)

    Article  Google Scholar 

  6. B. Andersson et al. , Phys. Rep. 97, 31 (1983)

    Article  Google Scholar 

  7. G. Gustafson, U. Pettersson, P.M. Zerwas, Phys. Lett. B 209, 90 (1988)

    Article  Google Scholar 

  8. OPAL Collab., G. Abbiendi et al. , Phys. Lett. B 453, 153 (1999); L3 Collab., M. Acciarri et al. , Phys. Lett. B 454, 386 (1999); ALEPH Collab., B. Barate et al. , Eur. Phys. J. C 17, 241 (2000); DELPHI Collab., P. Abreu et al. , Phys. Lett. B 511, 159 (2001)

    Article  Google Scholar 

  9. P. Minkowski, W. Ochs, Phys. Lett. B 485, 139 (2000)

    Article  Google Scholar 

  10. SLD Collab., K. Abe et al. , Phys. Rev. Lett. 76, 4886 (1996)

    Article  Google Scholar 

  11. OPAL Collab., G. Abbiendi et al. , Eur. Phys. J. C 11, 217 (1999)

    Article  Google Scholar 

  12. OPAL Collab., K. Ahmet et al. , Nucl. Instr. Methods A 305, 275 (1991)

    Google Scholar 

  13. P.P. Allport et al. , Nucl. Instr. Methods A 346, 476 (1994)

    Google Scholar 

  14. OPAL Collab., G. Alexander et al. , Z. Phys. C 52, 175 (1991)

    Google Scholar 

  15. OPAL Collab., K. Ackerstaff et al. , Eur. Phys. J. C 2, 213 (1998); OPAL Collab., G. Abbiendi et al. , Eur. Phys. J. C 12, 567 (2000)

    Article  Google Scholar 

  16. T. Sjöstrand, Comp. Phys. Comm. 82, 74 (1994)

    Article  Google Scholar 

  17. G. Marchesini et al. , Comp. Phys. Comm. 67, 465 (1992)

    Article  Google Scholar 

  18. G. Corcella et al. , JHEP 0101, 010 (2001)

    Google Scholar 

  19. L. Lönnblad, Comp. Phys. Comm. 71, 15 (1992)

    Article  Google Scholar 

  20. See, for example, G. Altarelli, Phys. Rep. 81, 1 (1982)

    Article  Google Scholar 

  21. G.C. Fox, S. Wolfram, Nucl. Phys. B 168, 285 (1980)

    Article  Google Scholar 

  22. G. Gustafson, Phys. Lett. B 75, 453 (1986); G. Gustafson, U. Pettersson, Nucl. Phys. B 306, 746 (1988); B. Andersson, G. Gustafson, L. Lönnblad, Nucl. Phys. B 339, 393 (1990)

    Article  Google Scholar 

  23. OPAL Collab., G. Alexander et al. , Z. Phys. C 69, 543 (1996)

    Article  Google Scholar 

  24. ALEPH Collab., R. Barate et al. , Phys. Rep. 294, 1 (1998)

    Article  Google Scholar 

  25. L. Lönnblad, Z. Phys. C 70, 107 (1996)

    Article  Google Scholar 

  26. L. Lönnblad, private communication

  27. J. Rathsman, Phys. Lett. B 452, 364 (1999)

    Article  Google Scholar 

  28. G. Gustafson, J. Häkkinen, Z. Phys. C 64, 659 (1994).

    Google Scholar 

  29. V.A. Khoze, T. Sjöstrand, Z. Phys. C 62, 281 (1994); Phys. Rev. Lett. 72, 28 (1994)

    Google Scholar 

  30. See for example R. Enberg, G. Ingelman, N. Timneanu, J. Phys. G 26, 712 (2000); Phys. Rev. D 64, 114015 (2001)

    Article  Google Scholar 

  31. J. Allison et al. , Nucl. Instr. Methods A 317, 47 (1992)

    Article  Google Scholar 

  32. OPAL Collab., M.Z. Akrawy et al. , Z. Phys. C 47, 505 (1990)

    Google Scholar 

  33. S. Catani et al. , Phys. Lett. B 269, 432 (1991)

    Article  Google Scholar 

  34. I.M. Dremin, J.W. Gary, Phys. Rep. 349, 301 (2001)

    Article  MATH  Google Scholar 

  35. DELPHI Collab., P. Abreu et al. , Phys. Lett. B 405, 202 (1997); ALEPH Collab., R. Barate et al. , Phys. Lett. B 434, 437 (1998); OPAL Collab., G. Abbiendi et al. , Eur. Phys. J. C 18, 447 (2001); SLD Collab., K. Abe Phys. Lett. B 507, 61 (2001)

    Article  Google Scholar 

  36. OPAL Collab., R. Akers et al. , Z. Phys. C 68, 179 (1995)

    Google Scholar 

  37. Yu.L. Dokshitzer, V.A. Khoze, S.I. Troyan, Sov. J. Nucl. Phys. 47, 881 (1988)

    Google Scholar 

  38. ALEPH Collab., R. Barate et al. , Z. Phys. C 76, 191 (1997); DELPHI Collab., P. Abreu et al. , Phys. Lett. B 449, 383 (1999)

    Article  Google Scholar 

  39. The larger multiplicity of gluon jets relative to quark jets was first observed in OPAL Collab., P.D. Acton et al. , Z. Phys. C 58, 387 (1993)

    Google Scholar 

  40. C. Peterson, T.F. Walsh, Phys. Lett. B 91, 455 (1980)

    Article  Google Scholar 

  41. Particle Data Group, K. Hagiwara et al. , Phys. Rev. D 66, 010001 (2002)

    Article  Google Scholar 

  42. See, for example, C. Amsler, Phys. Lett. B 541, 22 (2002)

    Article  Google Scholar 

Download references

Author information

Consortia

Rights and permissions

Reprints and permissions

About this article

Cite this article

The OPAL Collaboration. Tests of models of color reconnection and a search for glueballs using gluon jets with a rapidity gap. Eur. Phys. J. C 35, 293–312 (2004). https://doi.org/10.1140/epjc/s2004-01809-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2004-01809-2

Keywords

Navigation