Skip to main content
Log in

Perspectives for the study of charm in-medium quenchingat the LHC with ALICE

  • experimental physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract.

Charm mesons produced in nucleus-nucleus collisions are expected to be less attenuated (quenched) by the medium than hadrons containing only light quarks, since radiative energy loss of heavy quarks should be reduced by the ‘dead-cone’ effect. We start from a published energy-loss model to derive the quenching for D mesons at the LHC, introducing an approximation of the dead-cone effect and employing a Glauber-based description of the geometry of central Pb-Pb collisions to estimate the in-medium path lengths of c quarks. We show that the exclusive reconstruction of \({\rm D}^0\to{\rm K\pi}^ + \) decays in ALICE allows to measure the nuclear modification factor of the D mesons transverse momentum distribution and the D/charged hadrons ratio and, thus, to investigate the energy loss of c quarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. ALICE Technical Proposal, CERN/LHCC 95-71 (1995)

  2. M. Gyulassy, X.N. Wang, Nucl. Phys. B 420, 583 (1994) [arXiv:nucl-th/9306003]

    Article  Google Scholar 

  3. R. Baier, Yu.L. Dokshitzer, A.H. Mueller, S. Peigné, D. Schiff, Nucl. Phys. B 483, 291 (1997) [arXiv:hep-ph/9607355]; Nucl. Phys. B 484, 265 (1997) [arXiv:hep-ph/9608322]

    Article  Google Scholar 

  4. B.G. Zakharov, JETP Lett. 63, 952 (1996) [arXiv:hep-ph/9607440]

    Google Scholar 

  5. U.A. Wiedemann, Nucl. Phys. B 588, 303 (2000) [arXiv:hep-ph/0005129]

    Article  Google Scholar 

  6. S.S. Adler et al., PHENIX Coll., Phys. Rev. Lett. 91, 072301 (2003) [arXiv:nucl-ex/0306021]

    Google Scholar 

  7. J. Jia et al., PHENIX Coll., Nucl. Phys. A 715, 769 (2003)c [arXiv:nucl-ex/0209029]

    Article  Google Scholar 

  8. J. Adams et al., STAR Coll., Phys. Rev. Lett. 91, 172302 (2003). [arXiv:nucl-ex/0305015]

    Article  Google Scholar 

  9. C. Adler et al., STAR Coll., Phys. Rev. Lett. 90, 082302 (2003) [arXiv:nucl-ex/0210033]

    Article  Google Scholar 

  10. Yu.L. Dokshitzer, D.E. Kharzeev, Phys. Lett. B 519, 199 (2001) [arXiv:hep-ph/0106202]

    Article  Google Scholar 

  11. C.A. Salgado, U.A. Wiedemann, Phys. Rev. D 68, 014008 (2003) [arXiv:hep-ph/0302184]; http://csalgado.home.cern.ch/csalgado

    Google Scholar 

  12. M. Gyulassy, P. Lévai, I. Vitev, Nucl. Phys. B 571, 197 (2000) [arXiv:hep-ph/9907461]; Phys. Rev. Lett. 85, 5535 (2000) [arXiv:nucl-th/0005032]; Nucl. Phys. B 594, 371 (2001) [arXiv:nucl-th/0006010]

    Article  Google Scholar 

  13. A. Accardi et al., Hard Probes in Heavy Ion Collisions at the LHC: Jet Physics [arXiv:hep-ph/0310274]

  14. M.G. Mustafa, D. Pal, D.K. Srivastava, M.H. Thoma, Phys. Lett. B 428, 234 (1998) [arXiv:nucl-th/9711095]

    Article  Google Scholar 

  15. Z.W. Lin, R. Vogt, Nucl. Phys. B 544, 339 (1999) [arXiv:hep-ph/9808214]

    Article  Google Scholar 

  16. Yu.L. Dokshitzer, V.A. Khoze, S.I. Troyan, J. Phys. G 17, 1602 (1991)

    Article  Google Scholar 

  17. K. Adcox et al., PHENIX Coll., Phys. Rev. Lett. 88, 192303 (2002) [arXiv:nucl-ex/0202002]

    Article  Google Scholar 

  18. M. Djordjevic, M. Gyulassy, Phys. Lett. B 560, 37 (2003) [arXiv:nucl-th/0302069]

    Article  Google Scholar 

  19. E. Wang, X.N. Wang, B.W. Zhang [arXiv:nucl-th/0309040]

  20. R. Baier, Yu.L. Dokshitzer, A.H. Mueller, D. Schiff, JHEP 0109, 033 (2001) [arXiv:hep-ph/0106347]

    Google Scholar 

  21. R.J. Glauber, G. Matthiae, Nucl. Phys. B 21, 135 (1970)

    Google Scholar 

  22. A. Drees, H. Feng, J. Jia [arXiv:nucl-th/0310044]

  23. U.A. Wiedemann, Nucl. Phys. A 690, 731 (2001) [arXiv:hep-ph/0008241]

    Article  Google Scholar 

  24. K.J. Eskola, H. Honkanen, C.A. Salgado, U.A. Wiedemann, work in progress

  25. T. Sjöstrand et al., Computer Phys. Commun. 135, 238 (2001) [arXiv:hep-ph/0010017]

    Google Scholar 

  26. H.L. Lai et al., CTEQ Coll., Phys. Rev. D 55, 1280 (1997) [arXiv:hep-ph/9606399]

    Article  Google Scholar 

  27. B.A. Kniehl, G. Kramer, B. Pötter, Nucl. Phys. B 582, 514 (2000) [arXiv:hep-ph/0010289]

    Article  Google Scholar 

  28. C.A. Salgado, U.A. Wiedemann, private communication

  29. M. Mangano, P. Nason, G. Ridolfi, Nucl. Phys. B 373, 295 (1992)

    Article  Google Scholar 

  30. N. Carrer, A. Dainese, ALICE Internal Note, ALICE-INT-2003-019 (2003) [arXiv:hep-ph/0311225]

  31. H.L. Lai et al., CTEQ Coll., Eur. Phys. J. C 12, 375 (2000) [arXiv:hep-ph/9903282]

    Article  Google Scholar 

  32. K.J. Eskola, V.J. Kolhinen, C.A. Salgado, Eur. Phys. J. C 9, 61 (1999) [arXiv:hep-ph/9807297]

    Article  Google Scholar 

  33. A. Dainese, Ph.D. Thesis [arXiv:nucl-ex/0311004]

  34. N. Carrer, A. Dainese, R. Turrisi, J. Phys. G 29, 575 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dainese.

Additional information

Received: 4 December 2003, Published online: 3 March 2004

The publication of this paper has been authorized by the ALICE Collaboration

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dainese, A. Perspectives for the study of charm in-medium quenchingat the LHC with ALICE. Eur. Phys. J. C 33, 495–503 (2004). https://doi.org/10.1140/epjc/s2004-01645-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2004-01645-4

Keywords

Navigation