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Abstract Unlike the minimally coupled gravity theory
where matter is coupled with gravity in such a manner
so that one can differentiate the matter and gravity sec-
tor uniquely, the non-minimally coupled theories (NMCT)
are distinguished by the intermingling of two. As a conse-
quence of this the calculation of the energy momentum tensor
(EMT) in NMCT is beset with an arbitrariness. In this paper
we provide an algorithm based on the well known equiva-
lence between Jordan frame and Einstein frame formulations
which enables us to construct the EMT for NMCT in a unique
way.

1 Introduction

Einstein general relativity (GR) is based on the action of
the massive body on the space-time around. The latter again
influences the masses self consistently. However the shear
of gravitational field itself in the energy momentum tensor
has been a controversial point right from the beginning. The
principle of equivalence is considered in the weak form in
GR [1–3]. So there is no confusion in constructing the energy
momentum tensor (EMT) here. What one does is to place the
matter in background gravity, watch the response of the sys-
tem and the limit of this ratio of the changes δS to the change
in gravitational field gμν , in the limit of the gμν tend to ημν ,
gives us the EMT.1 However in the scalar tensor theory initi-
ated by the famous work of Brans and Dicke [4], a coupling

1 The EMT in GR obtained as we have indicated has no reason to be
equal to that obtained by Noether’s theorem [1].
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was allowed between the two i.e matter and gravity. This
makes the situation complicated because now one cannot be
sure whether gravitation will act as a source for itself and if
yes, how? As far as we know, this issue is yet not resolved.
So interaction of matter with gravity is more difficult to study
in such theories [5–9].

The coupling of matter and gravity can be separated in
GR. So it is called minimal coupling. With the advent of
experimental facilities in cosmology, it is known now that at
the order of galactic cluster distance GR must be modified.
But this modification would vanish in the solar system order
[10–14]. Of the post GR models where the coupling is not
separable are called non-minimally coupled theory (NMCT)
[15–22]. It appears that for non-minimally coupled theory, it
will be difficult to find an algorithm to construct the EMT.
This apprehension is corroborated by a plethora of papers
on the subject [23–25]. It has been attempted in the past to
find theoretically a method of construction based on field
theory arguments and along with principle of equivalence
[26] which was successful to reveal the inner link between the
apparently different empirical methods of obtaining EMT.
But the algorithm [26] is so general that it did not serve
the purpose of the practical cosmologist. However it gives a
lesson that one has to use some extra general principle for
this type of construction.

The non-minimal type of coupling has gained popularity
in recent past, because observational evidence in favour of
the late time cosmic acceleration has opened up possibili-
ties for such alternatives [27–29]. These are the scalar-tensor
theories [30–35] and they are adopted as modified theories
of gravity in numerous investigations [7,36]. As the energy
momentum tensor (EMT) of the scalar field in these scalar-
tensor theories can not be obtained using the standard def-
inition of symmetric EMT [1], so different prescription for
writing the EMT are found in the literature. Though all these
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EMTs are covariantly conserved, the individual components
of them are very different. However it is the individual com-
ponent which appear in the equations of motion, so it is not
clear how the different prescriptions lead to the same physi-
cal consequences. Hence an algorithm of obtaining the EMT
for a non-minimally coupled theory is very much desirable.

The usual algorithms used to construct the EMT in NMCT
is to rearrange the gravitational field equation to mimic the
Einstein field equations of GR [23,37,38], so that an expres-
sion for the EMT may be identified. While such a prescription
is completely viable, this process of rearranging the gravi-
tational field equation is not unique and leads to different
expressions for the EMT of the same physical theory, as men-
tioned above. In this paper, we will derive an algorithm to
construct an EMT exploiting the equivalance between the
conformally connected frames [39].

The new input in this paper is based on the formulation
of the theory in two conformally connected frames. The first
in which the physical model is defined and it is hence called
physical frame or Jordan frame [40–46]. The other frame is
connected by the conformal transformation with the physical
frame and it is called the Einstein frame. A notable property
is the removal of the non-minimality in the Einstein frame.
If other forms of matter is present then the non-minimality is
shifted to that part. Now the other forms of matter are usually
known matter (baryons, radiation and dark matter which can
be relatively easy to tackle) and are not important for our
general analysis. To simplify our analysis without missing
any general connection we don’t consider such terms.

The organization of the paper is as follows. In Sect. 2, we
explain the process to be followed to obtain a symmetric,
covariantly conserved EMT in the Jordan frame in a con-
cise manner. In Sect. 3, we review how a suitable choice of
conformal transformation converts our scalar-tensor theory
in the Jordan frame to a quintessence scalar field theory in
the Einstein frame. In Sect. 4, we examine to what extent the
equivalence of these two descriptions of the same physical
system works. In Sect. 5, we express the EMT obtained in
the Einstein frame in terms of Jordan frame variables and
also shading some light on it’s nature. In Sect. 6, we assume
that the conservation law in the Einstein frame implies the
conservation law in the Jordan frame. In view of the uni-
versal consensus about the equivalence of the Einstein and
Jordan frames( at least in the classical level), these assump-
tions seems quite reasonable. Using this equivalence, we have
shown that we can identify an appropriate EMT from these
calculations. We conclude in Sect. 7. The mostly positive
signature of the metric is used throughout the paper.

2 Our approach

Our purpose is to provide an algorithm for construction of the
EMT for NMCT which will depend on the canonical proper-

ties of the system and in no way on any arbitrary assumption
or physical intuition. The algorithm we propose is canonical
in the sense that it is an action based method. Remember that
there exists no such theory till date. So our method if suc-
cessful will lead to a novel algorithm for such an important
physical variables as pressure, energy density etc.

A prototype non-minimally coupled theory will be
assumed in a certain Friedmann Lemaître Robertson Walker
(FLRW) spacetime which is written as

AJ =
∫

d4x
√−g

[
1

2κ2 D(π)R

+
{
−1

2
gμν∇μπ∇νπ − V (π)

}]
(1)

Here

D(π) =
(

1 − ξ B(π)

(8πG)−1

)
(2)

It characterizes the non-minimality with B(π) being an
arbitrary function of π that can be tuned to give a class of
non-minimally coupled theories. Units are chosen such that
Mpl

2 = 1
8πG = 1

κ2 and for simplicity, we ignore all other
matter fields.

It has been proved quite generally that a conformal trans-
formation exists [52] that maps the initial theory in FLRW
to a flat Minkowski model. Our next task is to provide a con-
formal transformation which will map our FLRW manifold
to a flat Minkowski manifold.

Let M be an n-dimensional metric with Lorentzian signa-
ture, and � be a positive definite function then a transforma-
tion mapping it to the new space-time with metric,

g̃μν = �2gμν (3)

is called a conformal transformation.
A conformal transformation in general is thus not equiva-

lent to a diffeomorphism because of it’s non-linearity. If the
target and projected spaces have identical causal structure
then they will be connected by a conformal transformation.

Now we proceed with our construction. Since the target
spacetime is a flat Minkowski spacetime (Einstein frame in
our problem), it is easy to construct the EMT in this frame
using the well known formula

T̃μν = − 2√−g̃

δ(
√−g̃Lφ)

δg̃μν
(4)

Automatically [1] this EMT is divergence-less i.e.

∇̃μ
˜Tμν = 0 (5)

We propose to transform the l.h.s. of (5) conformally to
reach the initial state. This means in practice that the Ein-
stein frame variables are substituted by Jordan frame vari-
ables. We can do so because the conformal transformation is
invertible. Note carefully, that the operator ∇̃ when expressed
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in terms of Jordan frame variables following the given con-
formal connection, the result may not be of the same form
as (5). However, from [39], we know that there exists con-
formal invariance of certain equations involving the metric.
Just at this point we float our assumption that the form of the
transformed equation (5) may (if necessary by utilizing the
equation of motion of Jordan frame where ever required) be
put as

∇μT
μν

J = 0 (6)

where all entities are Jordan frame variables. Tμν
J then can

be thought of as the EMT of the NMCT under consideration
in the Jordan frame.

3 From Jordan frame to Einstein frame

In this section, we discuss the salient features of our scalar-
tensor theory as a non-minimally coupled scalar field inter-
acting with gravity in the Jordan frame and briefly review
how one can apply a suitable conformal transformation to
convert it to a corresponding theory in the Einstein frame
where the scalar field is minimally coupled to gravity. This
will help fix our notations as well as summarize all the rel-
evant transformation relations that we need for our purpose.
We start with the action for a scalar field π non-minimally
coupled to gravity in the Jordan frame given by (1). The dif-
ferent symbols are explained therein.

Now let us consider a conformal transformation given by
(3) which connects the metric gμν of the physical Jordan
frame to a metric g̃μν on a different manifold. The determi-
nants of these two matrices are related as
√−g = �−4

√−g̃ (7)

and the affine connection in these two frames are related by


α
μν = 
̃α

μν −
[
∇̃ν (ln�) δα

μ + ∇̃μ (ln�) δα
ν

−∇̃α (ln�) g̃μν

]
= 
̃α

μν − Ãα
μν (8)

For future convenience let us note that although neither 
̃α
μν

nor 
α
μν are tensor quantities in their respective frames,

Ãα
μν is a tensor quantity symmetric underμ ↔ ν. Moreover,

its form is such that it can be readily written either in Jordan
frame or in Einstein frame as per our convenience.

Ãα
μν =

[
∇̃ν (ln�) δα

μ + ∇̃μ (ln�) δα
ν − ∇̃α (ln�) g̃μν

]

= [∇ν (ln�) δα
μ + ∇μ (ln�) δα

ν − ∇α (ln�) gμν

]
= Aα

μν (9)

Using the above relations (3, 8) we can further relate the
curvature tensors defined in the two frames as

Rα
βμν = R̃α

βμν + 2 Ãα
β[μ;ν] + 2 Ãα

λ[μ Ãλ
ν]β (10)

and the corresponding Ricci scalars as

R = �2
[
R̃ + 6�̃ (ln�) − 6∇̃μ (ln�) ∇̃μ (ln�)

]
(11)

Once we substitute Eqs. (3, 7, 11) the Jordan frame action
(1) takes the form

AJ =
∫

d4x
√−g̃

[
1

2κ2
D(π)

�2 {R̃ + 6�̃ (ln�)

−6∇̃μ (ln�) ∇̃μ (ln�)} − 1

2�2 g̃
μν ∇̃μπ∇̃νπ − V (π)

�4

]

(12)

Note that since π is a scalar, ∇μπ = ∇̃μπ . Therefore the
kinetic term for the scalar field π can be written using the
transformed metric.

Now a particular choice of the conformal transformation

D(π) = �2 (13)

simplifies (12) to

AJ =
∫

d4x
√−g̃

[
R̃

2κ2 + 3

κ2 �̃ (ln�)

−
(

3

κ2 ∇̃μ (ln�) ∇̃μ (ln�) + 1

2�2 ∇̃μπ∇̃μπ

)
− V (π)

�4

]

(14)

where the second term in (14) is a surface term since

�̃ (ln�) = 1√−g̃
∂α

{√−g̃ ∇̃α (ln�)
}

Also due to the same choice of conformal transformation
(13),

∇̃μ (ln�) = 1

2

D′

D

(
∇̃μπ

)
(15)

with ′ denoting derivative with respect to π . Using (15) the
third term in the parenthesis in equation (14) can be cast as
the kinetic energy term of a new scalar field φ defined by
(
dφ

dπ

)2

=
{

3

2κ2

(
D′

D

)2

+ 1

D

}
= f2(π) (16)

and finally we have our action (14) converted into

AE =
∫

d4x
√−g̃

[
R̃

2κ2 − 1

2
g̃μν∇̃μφ∇̃νφ −U (φ)

]
(17)

in the transformed manifold where the newly defined scalar
field φ behaves as a quintessence scalar field with the self-
interaction

U (φ) = V (π)

D2 . (18)

The conformal transformation (3) along with the choice (13)
has mapped our non-minimally coupled scalar field theory in
the Jordan frame to a minimally-coupled scalar field theory
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in this new frame with metric g̃μν . This is referred to as
the Einstein frame in standard literature [37]. The issue of
the physical equivalence of the Einstein frame to the Jordan
frame is a sensitive one in the literature but as far as the
classical aspects are concerned the two formulations can be
safely assumed to describe the same physical reality. In the
next section, let us critically pin-point to what extent this
equivalence holds true.

4 Equivalence of Jordan frame vis-à-vis Einstein frame

Let us examine if the equivalence of Jordan frame vis-à-vis
Einstein frame holds at the equation of motion level. Because
of the minimal coupling the action for the gravitational field
and that of the scalar field are readily distinguishable in the
Einstein frame action AE in (17)

AE =
∫

d4x
√−g̃

R̃

2κ2 −
∫

d4x
√−g̃Lφ (19)

So the standard definition of symmetric EMT (4) for the
scalar field φ readily applies here and yields

T̃μν = ∇̃μφ∇̃νφ − g̃μν

{
1

2
g̃αβ∇̃αφ∇̃βφ +U (φ)

}
(20)

This symmetric EMT appears in the gravitational field equa-
tions

G̃μν = κ2T̃μν (21)

obtained by varying the action (17) with respect to the Ein-
stein frame metric g̃μν . To obtain the equation of motion, i.e.,
the field equation for the scalar field φ we can either demand
the covariant conservation of its EMT given by (5) or vary
the action (17) with respect to φ to arrive at

�̃φ − dU

dφ
= 0 (22)

The equivalence of this Einstein frame description to its Jor-
dan frame counterpart, on-shell, will be verified if starting
from the field equation of φ (22) we can obtain the field equa-
tion for π , the corresponding scalar field in Jordan frame. To
do this we remember that both φ and π are scalars, therefore
their covariant derivatives are related by

∇̃νφ = ∂νφ =
(
dφ

dπ

)
∂νπ =

(
dφ

dπ

)
∇νπ = f(π)∇νπ

(23)

where in the last equality Eq. (16) is used. Using (23) we can
further relate their d’Alembertians as

�̃φ = (fD)′

D2

(∇απ∇απ
) + fD

D2 �π (24)

and from Eq. (18) we calculate

dU

dφ
= V ′(π)

fD2 − 2V D′

fD3 (25)

Using these relations (24, 25) in (22) we get

�π + (fD)′

(fD)

(∇μπ∇μπ
) − V ′

Df2
− 2V D′

D2 = 0 (26)

Also note that π is non-minimally coupled, so to get to its
equation of motion, we need the gravitational field equation
of the Jordan frame as well. The same can be obtained by
varying the Jordan frame action (1) w.r.t. gαβ that gives

D(π)Gαβ = κ2
[
∇απ∇βπ − gαβ

{
1

2
gμν∇μπ∇νπ + V (π)

}]

+{∇α∇βD(π) − gαβ�D(π)} (27)

Using the trace of (27)

D(π)R = κ2
(

1 + 3D′′(π)

κ2

) (∇απ∇απ
) + 3D′(π)�π

+4κ2V (π) (28)

and re-expressing (fD)′ using (16), as

(fD)′ = ( 3D′′
κ2 + 1) D

′
2

(fD)
(29)

in (26) we can finally rewrite the φ-field equation completely
in terms of Jordan frame variables as

�π + D′
[

R

2κ2

]
− V ′(π) = 0 (30)

which is nothing but the equation of motion for the π - field
in the Jordan frame, as can be verified by directly varying the
Jordan frame action (1) with respect to π . This strengthens
our conviction that physical behaviour of the system depicted
in both the frames should map into each other exactly. How-
ever the geometric quantities of the two frames do not match,
as can be seen from Eqs. (10) and (11) that show both cur-
vature tensors and Ricci scalars of the two frames differ by
certain tensor quantities. This is not surprising since the basic
geometry of the two frames encoded in their respective met-
rics are different (3). In the next section, let us examine if
physical parameters like energy density and pressure in the
two frames adhere to this equivalence.

5 Energy-momentum tensor in Einstein frame
expressed in terms of Jordan frame variables

The parameters like energy density and pressure of the scalar
field are encoded in its EMT. Owing to its minimal coupling
to gravity the φ field in Einstein frame has an EMT (20) that
follows from an unambiguous definition (4). So we start there
and use Eqs. (23) and (18) in (20) to re-express it in terms of
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the π field, its derivatives and its self-interaction V (π). This
gives

T̃ αβ = 1

D2

[
(∇απ∇βπ)f2(π) − f2(π)(∇μπ∇μπ)

gαβ

2

−gαβ V (π)

D

]

≡ �αβ
(∇μπ, π

)
(31)

We deliberately introduce a different symbol �αβ(∇μπ, π)

here to signify that the right hand side is the Einstein frame
EMT, but written in terms of Jordan frame scalar field and its
derivatives. Direct calculation shows that �αβ (∇μπ, π) is
not covariantly conserved in the Jordan frame and therefore
can not pose as the EMT of the π field. This is not entirely
unexpected since the conformal transformation from Jordan
to Einstein frames is not a change of variable but that of
geometry. Therefore like geometric variables (e.g. curvature
tensor) the physical observables in the two frames also do
not map into each other.

Before we proceed further let us point out the source of
ambiguity of the EMT in any definition depending on the
single action (1) – it is due to the term D(π). So to get an
algorithm for EMT we must involve some extra input. In
the present case it is the physical equivalence of Einstein
and Jordan frame. How it is done will be described in the
following.

6 Algorithm for the energy momentum tensor in the
Jordan frame

We start with the conservation law (5) for the scalar field φ

in Einstein frame and try to re-express it in terms of Jordan
frame variables. To this end, we first expand the covariant
divergence of T̃ αβ

∇̃α T̃
αβ = ∂α T̃

αβ + 
̃α
αλT̃

λβ + 
̃
β
αλT̃

αλ (32)

and then using (8), (9) and (31) write the expansion in terms
of Jordan frame variables

∇̃α T̃
αβ = ∂α�αβ + (
α

αλ + Aα
αλ)�

λβ + (

β
αλ + Aβ

αλ)�
αλ

(33)

and finally combine suitable terms to express it as a sum of
tensor quantities in the Jordan frame

∇̃α T̃
αβ = ∇α�αβ + (Aα

αλ�
λβ + Aβ

αλ�
αλ)

(34)

so that the conservation Eq. (5) of the Einstein frame,
expressed in terms of Jordan frame variables, becomes

∇α�αβ + (Aα
αλ�

λβ + Aβ
αλ�

αλ) = 0 (35)

Our aim is to show that we can extract conserved EMTs from
(35) by simple algebraic manipulations and the equation of
motion in Jordan frame. In other words we assume that the
conformal transformations of the fields will allow us to write
the expression

∇α�αβ + (Aα
αλ�

λβ + Aβ
αλ�

αλ) (36)

as a total divergent

∇μT
μν

J (37)

where all entities of Tμν
J are Jordan frame variables. The

research on non-minimal coupling is an old one with so many
papers appearing in the field. The purpose is to explain the
late time acceleration [47]. However, there is an opinion that
the modifications of gravity can be absorbed in the equa-
tions of cosmology to project the theory as written in dark
energy paradigm [37]. We do not subscribed to the view [5,6]
because there is deep physical considerations involved in the
new modifications of gravity which cannot be just wiped
away by a swing of hand.

So finally, we have reached a point from where the answer
to the question posed in the very beginning of the paper is
explicit.

Using (31) and the expression of Aα
μν from (9), it is

straightforward to compute

(
Aα

αλ�
λβ + Aβ

αλ�
αλ

)
=

{
2

(∇λπ∇λπ
) (

f

D

)2

− V (π)

D3

}

×
(
D′

D

)
∇βπ (38)

Similarly using (31) we can compute

∇α�αβ =
{

∇α

(
f

D

)2
}{

∇απ∇βπ − 1

2
gαβ

(∇λπ∇λπ
)}

+
(

f

D

)2

∇α

{
∇απ∇βπ − 1

2
gαβ

(∇λπ∇λπ
)}

−∇α

(
gαβV (π)

D3

)
(39)

The second term of Eq. (39) can be written as

∇α

{
∇απ∇βπ − 1

2
gαβ

(∇λπ∇λπ
)}

= ∇α

[
∇απ∇βπ − 1

2
gαβ

(∇λπ∇λπ
) − gαβV (π)

+ 1

κ2 {∇α∇βD − gαβ�D + (1 − D)Gαβ}
]

+∇α

[
gαβV (π) − 1

κ2 {∇α∇βD − gαβ�D

+(1 − D)Gαβ}
]

(40)
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We can write the left hand side of (40) as

∇α

{
∇απ∇βπ − gαβ 1

2

(∇λπ∇λπ
)}

= ∇αT
αβ + ∇α

[
gαβV (π) − 1

κ2 {∇α∇βD

−gαβ�D + (1 − D)Gαβ}
]

(41)

where

T αβ =
[
∇απ∇βπ − 1

2
gαβ

(∇λπ∇λπ
) − gαβV (π)

+ 1

κ2 {∇α∇βD − gαβ�D + (1 − D)Gαβ}
]

(42)

Thus Eq. (39) becomes

∇α�αβ =
(

f

D

)2

∇αT
αβ +

{
∇α

(
f

D

)2
}

×
{
∇απ∇βπ − 1

2
gαβ

(∇λπ∇λπ
)} +

(
f

D

)2

∇α

×
[
gαβV (π)

1

κ2 {∇α∇βD − gαβ�D + (1 − D)Gαβ}
]

−∇α

(
gαβV (π)

D3

)
(43)

The fact that ∇αV (π) = V ′∇απ and using the trace of the
gravity field equation in Jordan frame (28) and the equation
of motion of the π field (30), we can further simplify (43).
The same is given by

∇α�αβ =
(

f

D

)2

∇αT
αβ −

{
2

(∇λπ∇λπ
) (

f

D

)2

−V (π)

D3

}(
D′

D

)
∇βπ (44)

Putting the values of (38) and (44) in (35), one gets

∇αT
αβ = 0 (45)

It is gratifying to observed that this is the sought for equa-
tion which we expected from our assumption. So we get the
algorithm for finding EMT for any NMCT.

For the convenience of the reader we now summarized our
algorithm in the following

1. Let the action given in Jordan frame be of the form (1).
Then the conformal transformation to the Einstein frame
is to be found.

2. Using the Einstein frame action thus obtained and the for-
mula (4) the EMT in the Einstein frame ( ˜Tμν) can easily
be deduced. The corresponding conservation relation read
as

∇̃μ
˜Tμν = 0 (46)

Note carefully, that both the operator (∇̃μ) and EMT ( ˜Tμν)
are obtained as function of Einstein frame parameters.

3. Now using the connection between the Jordan frame and
Einstein frame we get the form of the conservation law
(46) as

∇α�αβ + (Aα
αλ�

λβ + Aβ
αλ�

αλ) = 0 (47)

Here all the variables are the function of Jordan frame
parameters.

4. After the last step we are in the possession of an equation
(47) which is of the form χ = 0. Now by purely algebraic
manipulations and the equation of motion of the Jordan
frame we get the desired form (6).

This EMT (42) may be thought of as the conserved EMT in
the Jordan frame i.e; T αβ

J as mentioned in our approach (see
below Eq. (5)). Clearly in our algorithm there is no empirical
division of the action or its arbitrary rearrangement.

7 Conclusion

The widespread use of scalar-tensor theories [28–32] in cos-
mology demands a close examination of the ambiguity that
is present in the energy momentum tensor (EMT) of the non-
minimally coupled scalar. In NMCT, matter and gravity are
so coupled that it is impossible to vary the matter action with-
out varying gravity. Thus the form of EMT in this theory are
empirically taken without any deep physical foundation. The
standard approach in the literature to circumvent this diffi-
culty is to algebraically manipulate the gravity field equation
so that the covariant conservation of the Einstein tensor can
be used to identify the conserved EMT. However different
manipulations lead to different forms of the EMT resulting
in the said ambiguity. The importance of EMT in the cos-
mology can hardly be overemphasized. So such ambiguity
in EMT coming from a mere algebraic rearrangement and
not from some general physical principle is definitely not
welcome. In this paper, we demonstrate how to extract a
symmetric, covariantly conserved EMT from the conformal
invariance [39,48–52] of Jordan frame and Einstein frame
frames. Interestingly, the non-minimally coupled theory in
the Jordan frame emerges as a minimally coupled theory
in Einstein frame description. Though there remains some
difference of opinion about the equivalence of these two for-
mulations in the quantum mechanical level, it is universally
accepted that classically the equivalence holds.

In this paper, we employed this equivalence of the Jordan
frame and Einstein frame formulation of the theory to explic-
itly demonstrate that physical features like time evolution of
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the fields and conservation laws in one frame implies that
in the other. In the process we show that starting from the
covariant conservation of the scalar field EMT in the Ein-
stein frame one can arrive at the corresponding conservation
law in the Jordan frame.

So this paper serves a two-fold purpose, one is to exam-
ine the equivalence of the Einstein frame and Jordan frame
descriptions [40,41,48,53,54] of a class of scalar-tensor the-
ories at the level of the conservation laws and the extraction of
EMT of a NMCT in an unambiguous manner. Furthermore,
our algorithm is class apart from others in the literature in the
sense that we don’t look for mathematical rearrangement of
Einstein’s gravity equation to obtain EMT of a NMCT rather
we utilize equivalence of physical relations existing between
frames to obtain a symmetric, covariantly conserved EMT.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: All the required
date is in the manuscript.]
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