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Abstract The nature of dark matter (DM) remains one of
the unsolved mysteries of modern physics. An intriguing pos-
sibility is to assume that DM consists of ultralight bosonic
particles in the Bose–Einstein condensate (BEC) state. We
study stationary DM structures by using the system of the
Gross–Pitaevskii and Poisson equations, including the effec-
tive temperature effect with parameters chosen to describe the
Milky Way galaxy. We have investigated DM structure with
BEC core and isothermal envelope. We compare the spher-
ically symmetric and vortex core states, which allows us to
analyze the impact of the core vorticity on the halo density,
velocity distribution, and, therefore, its gravitational field.
Gravitational field calculation is done in the gravitoelectro-
magnetism approach to include the impact of the core rota-
tion, which induces a gravimagnetic field. As a result, the halo
with a vortex core is characterized by smaller orbital veloc-
ity in the galactic disk region in comparison with the non-
rotating halo. It is found that the core vorticity produces grav-
imagnetic perturbation of celestial body dynamics, which can
modify the circular trajectories.

1 Introduction

The nature of DM particles remains one of the most fascinat-
ing puzzles of modern physics. The DM large-scale proper-
ties consistent with astrophysical observations are success-
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fully explained by the cold dark matter model (CDM), which
describes DM as a collisionless sufficiently cold perfect fluid.
However, at smaller scales, the CDM encounters the cusp-
core, missing satellites, and too-big-to-fail problems. One
possibility to solve them is to assume that DM particles are
ultra-light bosons as it is assumed in ultra-light dark matter
(ULDM) models [1]. Generically, these models are charac-
terized by the suppression of the small-scale structures, the
presence of cores, and dynamic effects which arise from the
BEC formed in the central regions of galaxies. Such DM halo
proposals were investigated in [2–7].

The ULDM model is supported indirectly by observations.
For example, in cosmological simulations [8] it was found
that the bosonic DM can indeed reproduce the observed dis-
tribution of matter at very large scales [9,10], though the
mass of such bosons should be extremely small. There have
been also studies on some tensions of the ULDM with obser-
vational data from the rotation curves of galaxies including
the Milky Way, which could probe the particle mass in the
range m = 10−22 − 10−21 eV [11,12]. Furthermore, the
viability of the ULDM model was studied with the stellar
kinematics measurements in dwarf galaxies [13]. Another
important piece of evidence is the DM non-gravitational self-
interaction, which has been recently reported for collisions
of the clusters [14,15]. In addition, the DM halo model must
ensure the stability of a predicted halo. The stability of com-
pact astrophysical objects which may be formed due to the
Bose–Einstein condensation of ULDM was shown numeri-
cally [16].

In the present paper, we discuss DM, which consists
of ultra-light bosons with repulsive self-interaction. Such
models make use of two macroscopic quantum phenom-
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ena: Bose–Einstein condensation and superfluidity. Bose–
Einstein condensate in the mean-field approximation is
described by the Gross–Pitaevskii equation. The finite tem-
perature effects as well as thermal excitations are addressed in
[17,18]. In particular, we point out that the finite temperature
effects could lead to modification of the galactic halo density
distribution. In our model, the contribution of thermal exci-
tations can be safely neglected and the whole bosonic sys-
tem can be described as BEC by using the Gross–Pitaevskii
equation. By adding dissipation in the Gross–Pitaevskii equa-
tion one obtains a more general model, which includes the
effective temperature effect and predicts that the ULDM halo
consists of a BEC core and an isothermal envelope [19,20].
Such core-envelope structure in the ULDM model was also
discussed in [21–24]. Another important property, superflu-
idity, allows the quantization of the circulation and thus the
possibility of the formation of vortices in the core of the halo.
The central object of our study, the vortex, has a vanishing
wavefunction at the vortex line, with a quantized circular flow
around the vortex line [1]. So the BEC can form self-sustained
vortex solitonic structures with nonzero angular momentum
and phase dislocation at the vortex core like those discussed
in [25–28]. On the other hand, vortices can be induced by
external rotation [29–31]. In the present work, we investi-
gate nonlinear vortex soliton structures of self-gravitating
BEC without any external rotation. According to the recent
numerical studies [27,28] only the non-rotating soliton and
single-charged vortex are stable, even when strongly per-
turbed. In the present work, we consider a DM halo, which
consists of two regions - core and isothermal envelope, while
the core could be either a soliton or a single-charged vortex.

Most of our knowledge about DM is based on its gravita-
tional interaction with baryonic matter objects. Thus, testing
the validity of the UDM theory requires a detailed investi-
gation of the DM gravitational field. The DM density dis-
tribution, predicted by ULDM models, has been extensively
studied in numerical simulations and applied in studies aimed
at reconstructing the gravitational potential of DM halos for
the Milky Way [32] and dwarf galaxies [33]. In general, one
can determine the gravitational field of the ULDM by solv-
ing the Einstein equations with the DM density and rotation
flow as sources of the gravitational field, where rotation flow
is induced by the BEC superfluidity. Thus, in the ULDM
model, we should be able to deduce the impact of the super-
fluid DM rotation on observations. The dominant effect of the
vortex is due to its different core density distributions. More-
over, rotation flows produce v/c and higher order effects,
which can be taken into account in the gravitoelectromag-
netism approach discussed in [34–38] and used in our cal-
culations below. The gravitoelectromagnetic formulation of
a slowly rotating, self-gravitating, and dilute BEC intended
for astrophysical applications in the context of DM halos was
discussed in [39]. As a rule, the gravimagnetic force is quite

weak and does not affect significantly the dynamics of astro-
physical systems. However, in the central region of the BEC
vortex core, the DM density vanishes while the vortex flow
velocity dramatically increases, which can affect the dynam-
ics of luminous matter in the central region of the galaxies.

In the present work, we calculate the DM gravitational
field, which is needed for analysis of the observable predic-
tions of the DM model, namely, to study how DM affects the
movement of luminous matter. In our study, DM is the only
source of a gravitational field, while luminous matter moves
along geodesics, induced by DM. A more precise descrip-
tion of galactic kinematics is given by modeling the baryonic
contribution to the gravitational potential which can distort
the BEC soliton structures [40,41]. Such a contribution was
found to be significant for the Milky Way (MW) but not
essential for the SPARC LSB galaxies [42]. In this paper,
we will limit ourselves to some simple consequences of the
ULDM model on the galactic kinematics, namely, rotation
curves and deviation of circular trajectory, induced by the
gravimagnetic force. The more detailed study in this direc-
tion is beyond the scope of the current paper, though it is an
interesting perspective on further work.

The paper is organized as follows. In Sect. 2, we develop
the key parameters of our model, define the equations for halo
structure, and formulate the gravitoelectromagnetism ansatz.
In Sect. 3, we discuss the halo density profile for two stable
core configurations and define the corresponding hydrody-
namical velocity. In Sect. 4, the gravielectric (Newtonian)
field of the halo is calculated and the rotational curves are
obtained. Section 5 provides gravimagnetic field calculations
and our estimates of the gravimagnetic effect on circular tra-
jectory. The results are summarized in Sect. 6.

2 Model

2.1 Ultra-light dark matter model and halo structure

In this section, we briefly discuss the model suggested in
[19,20]. The structure of the DM halo is described by the
Gross–Pitaevskii–Poisson (GPP) equations, which define the
dynamical evolution of self-gravitating BEC field ψ

i h̄
∂ψ

∂t
= − h̄2

2m
Δψ + mΦgψ + Kγm

γ − 1
|ψ |2(γ−1)ψ

+m

2

(
3

4πη0

)2/3

|ψ |4/3ψ + 2kBTeff ln | ψ

ψ0
|ψ

−i
h̄

2
ξ

[
ln

(
ψ

ψ∗

)
−

〈
ln

(
ψ

ψ∗

)〉]
ψ, (1)

ΔΦg = 4πG|ψ |2, (2)
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where 〈X〉 = 1
M

∫ |ψ |2Xdr is the spatial average over the
halo, m is the bosonic particle mass, h̄ denotes the reduced
Planck constant, kB is the Boltzmann constant, ψ0 = √

ρ0

with ρ0 being a reference density and G is the gravitational
constant.

The first equation can be obtained by incorporating dis-
sipative effects into the Schrödinger equation by means of
the theory of scale relativity [43]. This generalization of the
Schrödinger equation means basically taking into account the
interaction of the system with the environment. The more rig-
orous way to obtain the generalized GP equation is developed
in [20], where the dissipation terms are explicitly derived by
including the Lynden–Bell pressure. This pressure accounts
for the gravitational cooling and violent relaxation phenom-
ena and leads to configurations with a core-envelope struc-
ture. We follow this approach in our current work and point
out its physical limitations: it describes a large-scale dilute
many-particle bosonic system in the BEC state which is gov-
erned mainly by the self-gravitational interaction.

We consider the BEC model with parameters γ = 2 and

K = 2πash̄2

m3 , whereas denotes the s-wave scattering length of
the self-interaction. The expression for K can be obtained by
describing the scattering of bosons in the first Born approx-
imation. This repulsive self-interaction is crucial for the sta-
bility of the solitonic vortex structures [27]. The parameter
η0 determines the equation of state of DM, and following the
argument formulated in [19], we will put η0 → +∞. The
first term on the right-hand side of Eq. (1) is the kinetic term,
and the second describes the interaction with the condensate
gravitational potential Φg. The third term takes into account
the bosonic self-interaction (we will consider only the case
γ = 2 which corresponds to binary collisions). The fourth
term accounts for the core, and the fifth term describes an
isothermal envelope with effective temperature Teff which
surrounds the core. This isothermal envelope is a halo of
scalar radiation, arising from the quantum interferences of
excited states, which could be described as collisionless parti-
cles in classical mechanics. As a result, the envelope behaves
essentially as CDM and is approximately isothermal [20].
The last term with ξ > 0 is a damping term and ensures that
the system relaxes towards the equilibrium state.

An important feature of the Gross–Pitaevskii (GP) equa-
tion is that it satisfies the H-theorem, i.e., the free energy F
of the system decreases [19]

Ḟ = −ξ

∫
ρu2dr ≤ 0,

where ρ = |ψ |2 denotes BEC density and u = ∇S(r, t)/m
is the velocity field. These quantities are obtained by applica-
tion of the Madelung transformation, according to the expres-
sion ψ(r, t) = √

ρ(r, t)ei S(r,t)/h̄ , where S(r, t) is the phase
term. The positive sign of ξ implies that the system relaxes
towards the state with zero hydrodynamical velocity u = 0.

Therefore, a stationary vortex solution with nonzero u can
be found only if we set ξ = 0.

The free energy F = E − Teff SB is expressed through
the total energy E , the effective temperature Teff , and
the Boltzmann entropy SB = −kB

∫
(ρ/m)(ln (ρ/ρ0) −

1)dr. The total energy consists of the classical kinetic
energy Θc = 1/2

∫
ρu2dr, the quantum kinetic energy

ΘQ = 1/m
∫

ρQdr, the gravitational potential energy
W = 1/2

∫
ρΦgdr, and the internal energy of the self-

interaction U = K
∫

ρ2dr, E0 = Θc + ΘQ + W +U . Here

Q = − h̄2

2m
Δ

√
ρ√

ρ
is the quantum potential. A stable equilib-

rium state corresponds to the minimum of the free energy
F at fixed total mass M of BEC. This gives the following
condition of quantum hydrostatic equilibrium [19]:

ρ

m
∇Q + ∇P + ρ∇Φg + ρ

2
∇u2 = 0,

where P = Kρ2 + ρ kBTeff
m is pressure due to the self-

interaction and effective temperature. Taking into account
the Poisson equation (2) and neglecting the quantum pres-
sure term Q, we obtain the following equation of state

−2KΔρ − kBTeff

m
Δ ln ρ = 4πGρ + 1

2
u2, (3)

where G is the gravitational constant. The solution of this
equation is discussed in Sect. 3.

2.2 Gravitoelectromagnetic approach

To determine the gravitational field of DM halo we employ
the well-known gravitoelectromagnetism (GEM) approach
[38] which was previously applied to galactic structures in
[34,36,37]. According to the GEM formalism, in the case of
a test particle (which is luminous matter in our case) moving
much slower than the speed of light c, it is convenient to
represent the spacetime metric in the form

dS2 = gμνdx
μdxν =

(
1 − 2Φg

c2

)
(dx0)2

+ 4

c2

(
Agdx

)
dx0 +

(
−1 − 2Φg

c2

)
δi j dx

i dx j , (4)

where Φg and Ag are the GEM scalar (gravielectric) and
vector (gravimagnetic) potentials. For the gravitoelectromag-
netic fields Eg and Bg

Eg = −∇Φg − 1

2c
∂tAg, (5)

Bg = ∇ × Ag, (6)

the Einstein equations imply the following relations:

∇Eg = 4πGρ,
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∇ × Bg = 2

c
∂tEg + 8πG

c
j.

Here sources of the gravitational field are mass density ρ and
matter current j = ρu (u is the matter velocity).

Since these equations are clearly analogous to those in the
electromagnetic theory, their solutions have a form similar
to Maxwell’s theory

Φg(r) = G
∫

Ω

ρ(r′)d3r ′

|r − r′| , (7)

Ag(r) = 2G

c

∫
Ω

ρ(r′)u(r′)d3r ′

|r − r′| , (8)

where integration proceeds over r′ occupied by DM particles,
ρ(r′) is the condensate density and u(r′) is the BEC veloc-
ity at r′. Coordinates r are associated with the test particle,
moving along geodesics in the BEC gravitational field.

Finally, the geodesic movement for a test particle, which
corresponds to the spacetime metric in the GEM form,

d2xi

dt2 = ∂Φg

∂xi
+ 2

c

d Ai
g

dt
− 2

c

(
∂Ag

∂xi

dx
dt

)

can be equivalently described as the classical motion mẍ =
Fg where the gravitoelectromagnetic analog of the Lorentz
force

Fg = −m

(
Eg + 2

c
v × Bg

)
= m(aE + aB), (9)

v is the particle velocity andm is its mass. Here we introduced
gravielectric aE = −Eg and gravimagnetic aB = − 2

c v ×Bg

components of acceleration.

3 Halo density profile

The model, based on the generalized GPP equations (see
Eqs. (1), (2)) describes the core-envelope structure of DM
halo with a dense core and diffuse isothermal envelope. The
model yields the following equation of state for the ULDM
P = Kρ2 + ρ kBTeff

m (see Sect. 2). Thus, one can conclude,
that in the core region equation of state is approximately
P = Kρ2, because the weak self-interaction dominates over
effective temperature impact due to large density. This is why
the latter will be neglected in the discussion of the core states.
On the contrary, in the isothermal envelope region, we have
the equation of state P = ρ kBTeff

m , which means that the
effective temperature term plays a crucial role there.

Based on these considerations, we calculate the halo den-
sity in two steps. Firstly, we reproduce the numerical result
for the total density of the non-rotating halo (see the origi-
nal result in [19]), which defines density distribution in the

isothermal envelope region. This step is needed as a start-
ing point to define isothermal envelope density distribution
and to compare the discussed in [19] s = 0 solitonic core
with the new case of vortex core s = 1. Secondly, under
the assumption that core and envelope do not interact, we
discuss the core density profile separately by means of vari-
ational ansatz [25]. This way we will study the spherically
symmetric (s = 0) and the single-charged vortex (s = 1)
solutions for the core density distribution.

3.1 Isothermal envelope

In the first case of a non-rotating core, we can set u = 0, and
then the Eq. (3) simplifies

−4πash̄2

m3 Δρ − kBTeff

m
Δ ln ρ = 4πGρ,

where we took into account that K = 4πash̄2

m3 .
It is convenient to introduce the density function and the

radial coordinate ρ = ρ0e− f , y = r/r0, where

r0 =
√

kBTeff

4πGρ0m
(10)

and ρ0 defines the density at the center. The equation of state
can be rewritten in the following form:

d2 f

dy2 + 2

y

d f

dy
=

χ
(
d f
dy

)2 + 1

χ + e f
, (11)

where χ = 4πash̄2ρ0/(m2kBTeff). The boundary conditions
are f (0) = 0 and d f

dy (0) = 0, which define the boundary

conditions for the density function ρ0 = ρ(0) and dρ(0)
dr = 0.

We solve Eq. (11) numerically for different values of χ and
present solutions in Fig. 1a. The isothermal envelope density
distribution is defined as ρ = ρ0e− f = ρ0 fN(r), where f is
a numerical solution of Eq. (11).

The profile has a solitonic core and an isothermal envelope
whose density decreases as ρ(r) ∼ kBTeff/(2πGmr2) =
v2∞/(4πGr2) [19] in agreement with observations (here v∞
is the constant rotational velocity in the large distance limit).
Thus, we see that the existence of the core-envelope struc-
ture is essential to describe observations that could not be
achieved with the standard system of the GPP equations (they
predict only the compact core with exponentially decaying
density). The existence of a BEC core in the ULDM model
was also discussed in [21–24].

The possible physical origin of the core-envelope structure
could be the merger of two-state configurations when the total
system tends to a virialized state, and the obtained averaged
profile has a core and a tail structure [44]. The process of
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halo formation usually undergoes gravitational cooling [45],
which is discussed in [45,46]. Gravitational cooling process
for initially quite arbitrary density profiles leads to relaxation
and virialization through the emission of scalar field particles
[47]. The resulting profile has the same dense core and diffuse
envelope structure.

In the case s = 1, the hydrodynamical velocity u does
not vanish in the inner region due to the existence of the
vortex. The definition of the velocity profile in the isother-
mal halo region is a complicated task. One would expect that
there is an intermediate region between the core and isother-
mal envelope, where the hydrodynamical velocity is small
but nonzero, and at large enough distances, we should have
u = 0. This is due to the divergent mass of the isothermal
envelope, which therefore cannot rotate in order for kinetic
energy to be finite. For an estimate, we simply putu = 0 in the
whole isothermal envelope region. This approximation can
be justified by the negligibly small density of the isothermal
envelope in comparison with the core density, so its rotation
would have no sufficient impact on the system. Hence the
density profile in the envelope region remains unchanged.
Thus, to define isothermal envelope density distribution we
use the numerical solution for ρ = ρ0 fN(r), obtained earlier
in the case of non-rotating core. The density profile in the
core region will be discussed in the next section in detail.

To reproduce the Milky Way halo mass M = 1.3 ×
1012M� and radius Rhalo = 287 kpc [48], taking into account
the model described in [19], we choose the following values
of the particle massm = 2.92×10−22 eV/c2 = 0.52×10−57

kg, scattering length as = 8.17 × 10−77 m, effective DM
temperature Teff = 5.09 × 10−25 K, central density in the
spherical case ρ0 = 0.34 × 10−17 kg/m3, distance scaling
parameter r0 = 0.071 kpc and χ = 20. For the spherically
symmetric case, the chosen parameters yield the core with
mass Mc = 6.39 × 1010M� and radius Rc = 1 kpc.

The BEC temperature of such ultralight bosons can be
estimated in the framework of a simple model of non-
interacting bosonic particles. This temperature (see, e.g.
[17,18]) appears to be much higher than the effective tem-
perature, and therefore thermal excitations can be neglected.
However, the interactions, especially the dominating self-
gravitating component, could significantly change the value
of the temperature. To the best of our knowledge, a rigor-
ous derivation of the critical temperature for self-gravitating
bosonic DM has not yet been discussed in the literature,
although it is important and should be addressed in future.

3.2 Core stationary states

The dynamics of self-gravitating BEC of N weakly inter-
acting bosons with mass m is described by the GPP system

of equations with the term, corresponding to the effective
temperature impact:

i h̄
∂ψ

∂t
=

(
− h̄2

2m
∇2 + gN |ψ |2 + mΦg + 2kBTeff ln

∣∣∣ ψ

ψ0

∣∣∣
)

ψ

(12)

∇2Φg = 4πGmN |ψ |2 (13)

where g = 4π h̄2as
m is the coupling strength that corresponds

to the two-particle interaction, as is the s-wave scattering
length, Φg is the gravitational potential and G is gravitational
constant.

The GPP system of Eqs. (12) and (13) includes three cru-
cial physical parameters: particle mass m, the total number
of particles N (or, equivalently, total mass M) and cou-
pling strength g (or, equivalently, self-interaction constant
λ

8π
= as

λc
, where λc = h̄

mc is the Compton wavelength of
bosons) [25].

The GPP system of equations is invariant under the trans-
formation t = λ2∗t ′, r = λ∗r′, ψ = λ−2∗ ψ ′, Φg = λ−2∗ Φ ′

g,

g = λ2∗g′, where λ∗ > 0, which allows us to scale-out the
coupling constant to g = 1.

In order to simplify calculations, it is convenient to intro-
duce dimensionless variables and wave function

i
∂ψ

∂t
=

(
−1

2
∇2 + |ψ |2 + Φg + T̃eff ln |ψ |

)
ψ, (14)

∇2Φg = |ψ |2, (15)

where the dimensional variables are related to the dimension-

less ones as follows: r = rphL , t = ω∗tph, Φg =
(

L
λc

)2 Φgph

c2 ,

and ψ = λ
8π

(mPl
m

)2 √
4πGM h̄

mc2 ψph. Here the distance and

time scaling parameters are L = λc
mPl
m

√
λ

8π
= mPl h̄

m2c

√
λ

8π
=

0.99×1019m = 0.32 kpc and ω∗ = cλc
L2 = 2.08×10−15 s−1.

The dimensionless effective temperature parameter is T̃eff =
2kBTeff

ω∗h̄ and will be neglected in the following discussion

because the corresponding term T̃eff ln |ψ | is negligibly small
in the core region. Therefore, we neglect the temperature
effects in the analysis of the BEC core density distribution.

For the BEC core mass Mc = 6.39 × 1010M� and radius
Rc = 1 kpc, we solve the GPP Eqs. (14) and (15) by using
the variational ansatz in cylindrical coordinates r, z and φ

ψ(r, φ, z) = A
( r

R

)s
e
− r2

2R2 − z2

2(Rη)2
+isφ

. (16)

Here R and η are variational parameters, which will be fixed
later. Constant A is fixed by the normalization condition
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A =
√

N0

π3/2ηR3s! , (17)

the cases s = 0, 1 are considered, and N0 is defined by the
core mass

N0 = 4π
Mc

mPl

√
λ

8π
= 2.55 · 104,

where mPl =
√

h̄c
G is the Planck mass and λ/(8π) = 1.21 ×

10−91 is the self-interaction coupling constant.
The dimensionless quantities and the physically observed

ones are related as follows:

Rc = R99L = mPlh̄

m2c

√
λ

8π
R99, (18)

ρ = M |ψph|2 = M

L3N0
|ψ |2

= ρ0

( r

R

)2s
e
− r2

R2 − z2

(Rη)2 , (19)

where R99 is the dimensionless radius which contains 99
percent of the mass of the core (the variational analysis gives
R99 ≈ 2.38R in the case of solitonic core and R99 ≈ 2.58R
in the case of vortex core), ρ is the condensate density, and
ρ0 = MA2/(L3N0) is the density scaling parameter. Rc

denotes the total radius of the core in physical units.
Using the variational ansatz for the BEC wave function

(16), we obtain the energy [25]:

E =
∫

d3rψ∗(r, t)
(

−1

2
∇2 + |ψ |2 + Φg

)
ψ(r, t)

= ε

(
N0(1 + 2η2(1 + s))

4R2η2 + N 2
0 Γ (s + 1/2)

4
√

2π2R3ηΓ (s + 1)

− N 2
0

8πR

∫ ∞

0
Erfc

(
k∗η√

2

)
L2

s

(
k2∗
4

)
e− k2∗(1−η2)

2 dk∗

)
,(20)

where Γ (x) denotes the Gamma function, Erfc(x) is the com-
plementary error function and Ls(x) is a Laguerre polyno-
mial. Here ε = (h̄2/4πmPlλ

2
c)(8π/λ)3/2 is characteristic

energy, which does not depend on variational parameters.
In what follows, we will use r0 = 2.18 × 1018 m =

0.071 kpc = 0.22 L as the distance scaling parameter.
In the subsection below, we investigate the case s = 0.

3.2.1 Non-rotating spherically-symmetric core

In this case, the BEC wave function in Eq. (16) depends only
on radial distance r in spherical coordinates

ψ(r) = Ae− r2

2R2 (21)

and the density function (see Eq. (19)) equals

ρ(r) = ρ0e
− r2

R2 . (22)

In what follows, r will denote spherical distance, when
the s = 0 case is discussed.

We should relate R and the BEC core radius Rc which
is defined through Mc = 4

π
ρ0R3

c [25]. Since ρ0 =
McA2/(L3N0), the numerical result for halo density (see
Fig. 1a) gives Rc

LR = 1.64 or R = 8.66 in the r0 scale. It is
interesting to compare the obtained R with its value in the
variational analysis method used in [25]. Substituting η = 1
and s = 0 in the energy functional in Eq. (20), we get

E

ε
= 3N0

4R2 + N 2
0

4
√

2π3/2R3

− N 2
0

8πR

∫ ∞

0
Erfc

(
k∗√

2

)
dk∗.

Its extremum is defined by the equation

R2 − 6
√

2π3/2

N0
R − 3 = 0 (23)

that gives R = 1.73 or R = 7.86 in the r0 scale. Thus,
Rc = 0.9 kpc (see Eq. (18)) and, therefore, the variational
analysis method and numerical calculation (see Fig. 1a) are
in a good agreement.

3.2.2 Rotating axially-symmetric core

In the case s = 1 (see Eq. (16)), we have a wave function,
which depends on cylindrical coordinates r, z, φ

ψ(r, φ, z) = A
r

R
e
− r2

2R2 − z2

2(Rη)2
+iφ

(24)

and the density function equals

ρ(r, z) = ρ0

( r

R

)2
e
− r2

R2 − z2

(Rη)2 , (25)

where A is given by Eq. (17).
The dimensionless total energy in Eq. (20) for s = 1 reads

E

ε
= N0(1 + 4η2)

4R2η2 + N 2
0

8
√

2π3/2R3η

− N 2
0

8πR

∫ ∞

0
Erfc

(
k∗η√

2

)(
1 − k2∗

4

)2

e− k2∗(1−η2)

2 dk∗.

Equations of an extremum of the total energy with respect
to η and R yield the solution η = 1.464, and R = 1.226
in the L scale. In the r0 scale, we have R = 5.57. To deter-
mine the core density distribution, we use the variational
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Fig. 1 Halo density profile ρ/ρ0 as a function of dimensionless r/r0
coordinate in the plane z = 0, both x and y axes have log scale. The cyan
insets in both plots show 3D density isosurfaces of the corresponding
BEC cores. Left panel (a) shows the halo with the BEC core in a soliton
state (s = 0). Three curves correspond to different values of parameter
χ = 4πash̄2ρ0/(m2kBTeff ), so that while increasing χ one decreases

effective temperature T and vice versa. Right panel (b) shows the halo
with the core in a vortex state (s = 1, χ = 20). Note, we investigate
in detail the isothermal envelope for χ = 20, which is consistent with
observations for the Milky Way. The black dashed line divides the dis-
tribution into two parts: the inner region with a rotating core and the
outer region composed of an isothermal envelope

analysis result. We assume that the core interacts negligi-
bly weakly with the isothermal envelope. Therefore, for the
isothermal envelope region, we use the numerical distribu-
tion fN(rsph) = fN(

√
r2 + z2) (see Fig. 1a), derived under

u = 0 condition.
Thus, we obtain (see Fig. 1b)

ρ(r, z) = ρ0

⎧⎨
⎩2.6

( r
R

)2
e
− r2

R2 − z2

(Rη)2 , rsph ≤ Rc

fN
(
rsph

)
, rsph > Rc,

(26)

where r = √
x2 + y2 and z are cylindrical coordinates and

rsph = √
x2 + y2 + z2. Here ρ0 is the spherical halo central

density. The spherically symmetric isothermal envelope den-
sity ρ(r, z) = ρ0 fN

(
rsph

)
is found numerically by solving

Eq. (11). The total core radius Rc is defined by Eq. (18).

By using u = jph
ρ

and the particle current

jph = − i h̄

2m
(ψ∗

ph∇ψph − ψph∇ψ∗
ph)

= h̄

m

|ψph|2
r

eφ,

we find the velocity distribution u(r) of DM particles

u =
h̄
m

|ψph|2
r

|ψph|2 eφ = h̄

m

1

r
eφ = α

cr0

r
eφ, (27)

where α = h̄/(mr0c) = 0.31 · 10−3. Obviously, the velocity
of condensate particles increases while approaching the cen-
ter of the vortex. Note that there is an inner region where the

velocity becomes of the order of c and, therefore, this region
cannot be described by making use of the gravitoelectromag-
netism ansatz (see Appendix A for explanation). This region
is limited by the radial distance r = αr0 = 2.2 × 10−5 kpc.

In the two following sections, by using the formalism of
GEM, we describe particle movement in the gravitational
field of DM in the s = 0, 1 states aiming to understand how
baryonic matter particles interact with the proposed DM.

4 Gravielectric field and rotation curves

In this section, we obtain numerical results for the gravielec-
tric (Newtonian) component of the DM halo gravitational
field. Having calculated the field, we analyze the rotation
curves, predicted by the model in the cases of soliton and
vortex core.

To determine the gravielectric potential in the case of a
non-rotating halo we use the numerically obtained density
distribution (see Fig. 1a). In the case of a rotating axially
symmetric halo, the mass density distribution is shown in
Fig. 1b.

In the spherically symmetric case of non-rotating halo
(s = 0), only the radial component of the gravielectric field
is not zero (see Eq. (7)) and the corresponding gravielectric
acceleration aE = −Eg = aEer (see Eq. (9)) is presented
in Fig. 2. The acceleration at large distances behaves like

aE/a0 = 82.66r0/r , i.e., aE = 9.3×10−29 kpc2

s2 ×1/r . Here

a0 = Gρ0r0 = 5.38 × 10−13 km/s2. In the core region,
where the density distribution is described by the variational

123



451 Page 8 of 14 Eur. Phys. J. C (2023) 83 :451

Fig. 2 The radial component of gravielectric field aE/a0 (blue dashed
line) and density (red solid line) of the non-rotating halo (s = 0 core)
as functions of the dimensionless r/r0 coordinate, both x and y axes
have log scale. Here a0 = 5.38 × 10−13 km/s2, r0 = 71 pc

ansatz (22), the gravielectric potential and the corresponding
acceleration can be found analytically

1

r2

∂

∂r
r2 ∂

∂r
Φg = −4πGρ0e

− r2

R2 .

The general solution is given by

Φg(a) = −4πGρ0R
2
(
c1

r
+ c2 − R

√
π Erf(r/R)

4r

)
.

where Erf(x) denotes the error function and c1, c2 are con-
stants.

We can set c2 = 0. At a large distance, the gravielectric
potential of the halo must be equal to the potential of a body
with the same mass M = π3/2ρ0R3. This implies that c1 =

0. Thus, Φg(r) is completely determined and we have the
radial acceleration

aE(r) = ∇Φg(r)

= πGρ0R
3

(
2e−r2/R2

Rr
−

√
π Erf

( r
R

)
r2

)
er .

Clearly, aE has a maximum at r = R = 8.66 in the r0 scale
in agreement with the radial gravielectric acceleration shown
in Fig. 2.

Gravielectric field in the case of vortex core has radial
and z components in cylindrical coordinates, namely, aE =
aErer + aEzez . They are illustrated in Figs. 3 and 4, respec-
tively. The radial dependence of the gravielectric radial accel-
eration in the z = 0 plane is shown in Fig. 5. Notice that at
r ≈ 3r0 = 0.2 kpc the acceleration changes sign, hence test
particles are repelled in the interior region and attracted in
the exterior region. This result stems from the geometry of
the considered doughnut-shaped halo with a hole.

Now we aim to determine the impact of the gravitational
field of the DM halo on the movement of celestial bodies in
the Milky Way galaxy. According to our model (see Sect. 3)
density distribution depends on the state of the core, which
must lead to a difference between the rotation curves, which
they induce. To demonstrate how the gravielectric accelera-
tion induces rotation in the s = 0 and s = 1 cases, we present
the rotation velocity v in the z = 0 plane as a function of the
radial distance r in Fig. 6. The new result here is the curve
in the case s = 1, while s = 0 case was discussed earlier in
[19]. Remarkably, rotation curves in the internal region are
significantly affected by the topology of the BEC core.

The two halos with s = 0 and s = 1 core have equal mass,
which is the observed mass of DM halo in the Milky Way,
according to the model discussed in Sect. 3. The numerical
results indeed show that at large distances the corresponding

Fig. 3 The radial component of gravielectric acceleration aEr/a0
induced by the rotating halo (s = 1 core) as a function of dimensionless
r/r0 and z/r0 coordinates. Here a0 = 5.38 × 10−13 km/s2, r0 = 71

pc. The left panel shows the isothermal envelope region with the three
axes in the log scale and the right panel is a zoom-in of the core region
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Fig. 4 The z-component of gravielectric acceleration aEz/a0 induced
by the rotating halo (s = 1 core) as a function of dimensionless r/r0
and z/r0 coordinates. Here a0 = 5.38 × 10−13 km/s2, r0 = 71 pc. The

left panel shows the isothermal envelope region with the three axes in
the log scale and the right panel is a zoom-in of the core region

Fig. 5 The radial component of gravielectric acceleration aEr/a0 (blue
dashed line) and density (red line) of the rotating halo (s = 1 core) as
functions of dimensionless r/r0 coordinate in the z = 0 plane, both x
and y axes have log scale. Here a0 = 5.38 × 10−13 km/s2, r0 = 71 pc

rotational curves have the same asymptotic. Note that, the
gravielectric force in s = 1 case changes its sign at r = 3r0 =
0.2 kpc. Hence, at distances less than 0.058 kpc there are no
stable rotation orbits in the rotating halo model. However,
the stable orbits are possible if one includes not only DM but
also the other sources of the gravitational field, namely, the
baryonic galactic bulge and the supermassive black hole in
the central region of the galaxy.

Note that rotation curves exhibit a pronounced minimum
at r ≈ 103 kpc (see inset in Fig. 6). Such a non-monotonic
behaviour of the rotation curves was pointed out in Ref. [19].
As was pointed out in Ref. [19] this local minimum crucially
depends on parameter χ = 4πash̄2ρ0/(m2kBTeff). To com-
pare obtained rotational curves with observations one needs
also to account for baryonic matter distribution. However, the
lack of reliable observational data for the rotational curve of
the Milky Way at distances much greater 15 kpc (see e.g.

Fig. 6 The rotation (Kepler) velocity v in the z = 0 plane as a function
of the radial distance r . The pink dashed line corresponds to the non-
rotating spherical halo (s = 0 core) and the cyan solid line to the
rotating halo (s = 1 core). The background represents a gradient plot
of the density distribution in s = 1 case. The inset shows rotational
curves in the log-log scale for a wide range of radial distances

[49]) does not allow one to verify these theoretical predic-
tions at large distances.

5 Gravimagnetic field in the BEC core

In this section, we obtain numerical results for the gravi-
magnetic (first post-Newtonian) component of the DM halo
gravitational field (see Sect. 2.2 of Sect. 2). The component
is induced by a moving source, hence, it is nonzero only in
the second case of the DM halo with a vortex core.

To determine the gravimagnetic potential in the case of a
rotating axially symmetric halo we use the mass density and
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Fig. 7 The radial component of gravimagnetic field Br/a0 induced by
the rotating core as a function of dimensionless r/r0 and z/r0 coordi-
nates. Here a0 = 5.38 × 10−13 km/s2, r0 = 71 pc

Fig. 8 The z-component of gravimagnetic field Bz/a0 induced by the
rotating core as a function of dimensionless r/r0 and z/r0 coordinates.
Here a0 = 5.38 × 10−13 km/s2, r0 = 71 pc

velocity distributions given by Eqs. (26) and (27). The calcu-
lation is based on Eqs. (8) and (6). The results of numerical
integration for radial and z-components of the gravimagnetic
field, B = Brer + Bzez , are shown in Figs. 7 and 8, respec-
tively. Figure 9 displays the z-component of the gravimag-
netic field Bz in the z = 0 plane (the radial component of the
gravimagnetic field equals zero in this plane).

Having determined the gravimagnetic field, we can calcu-
late the corresponding acceleration of a test particle. Using
Eq. (9), we have

aB(r = (a, b, k)) = −2

c
veφ × Bg

= −0.34αGρ0r0
v

c
(Bz(a, b, k)er + Br (a, b, k)ez)

= aBr(a, b, k)er + aBz(a, b, k)ez .

Fig. 9 The z-component of the gravimagnetic field Bz/a0 (blue dashed
line) and density (red line) of the rotating core as functions of dimen-
sionless r/r0 in z = 0 plane. Here a0 = 5.38 × 10−13 km/s2, r0 = 71
pc

Table 1 Parameters of the Milky Way’s rotational velocity profiles [50]

Galactic disk v1 (km/s) γ0 km/s kpc γ1 km/s kpc

Thin disk 236.71 45.41 − 1.93

Thick disk 206.93 39.086 − 2.30

where a = r/r0, b = φ, c = z/r0 are rescaled cylindrical
coordinates.

This allows us to estimate the impact of the gravimag-
netic field on stars’ motion. In the case of the Milky Way
galaxy, v = v0 + γ0r0a if a < abreak and v = v1 + γ1r0a for
a ≥ abreak [50]. Constants γ0, γ1, abreak, and v1 are different
for the thick and thin galactic disks’ velocity profiles. Setting
Rbreak = r0abreak = 5 kpc and v0=0 in both cases gives the
values of parameters presented in Table 1. This approxima-
tion is valid up to 13 kpc = 180r0 [50]. We should emphasize
here that v includes only the component of velocity directed
along eφ and does not include the component along er . It is
important to distinguish the φ-component and the absolute
value of the whole velocity when dealing with sufficiently
non-circular elliptic orbits.

According to Eq. (9), the gravimagnetic acceleration in
galactic plane c = 0 can be estimated as

aB = −0.34αGρ0r0
vi + γi r0a

c
Bz(a, b, 0)er ,

where i = 0 for a < abreak and i = 1 for a ≥ abreak.
The corresponding plot is shown in Fig. 10. The spike on
the red curve, which shows the modulus of the ratio of the
gravimagnetic acceleration to the gravielectric one |aBr/aEr|
appears because the gravielectric acceleration changes sign
at r = 3r0 = 0.2 kpc.

123



Eur. Phys. J. C (2023) 83 :451 Page 11 of 14 451

Fig. 10 The radial component of gravimagnetic acceleration (solid and
dashed blue lines) aBr/a0 for thin and thick disks, respectively, and the
absolute value of the ratio of gravimagnetic to gravielectric accelera-
tions |aBr/aEr| (both for thin and for thick disks) as a function of r/r0.
Here a0 = 5.38 × 10−13 km/s2, r0 = 71 pc

Fig. 11 The radial component of gravimagnetic acceleration (dashed
blue line) aBr/a0 and gravielectric acceleration (red line) aEr/a0 in the
inner region of halo. Here the gray region corresponds to r < 0.1r0,
where the gravimagnetic approximation is not valid. Here a0 = 5.38 ×
10−13 km/s2, r0 = 71 pc

It is interesting that aBr(a) tends to a constant in the a � 1
limit (see Fig. 11). This directly follows from the analytical
expression. In the interior region r < 5 kpc, we have

aBr

a0
= −0.34α

γ0r0a

c
Bz(a, b, 0).

In the a � 1 limit, we find

Bz(a, b, 0)

≈ 2π

a

∫ ∞

0
dx

∫ ∞

−∞
dz

x2

√
x2 + z2

e
− x2

R2 − z2

(Rη)2 .

The last integral can be calculated numerically which
yields

aBr

a0
≈ −0.34α

γ0r0

c
× 103 = 10−6.

We see that in the case under consideration, the gravimag-
netic acceleration indeed tends to a constant in the a � 1
limit.

The gravimagnetic field calculations performed in this
section allow us to obtain some testable predictions of the
model. According to numerical results for Bg and Eg, the
gravielectric force changes its sign at r = 3r0 = 0.2
kpc, and the gravimagnetic force component is attractive
or repulsive, depending on the direction of the motion.
The acceleration in the polar coordinates (r, φ) is given by
a = (r̈ − r φ̇2)er + (r φ̈ + 2ṙ φ̇)eφ . Then the equations of
motion for a star take the form

d2r

dt2 = r

(
dφ

dt

)2

− Er − 2Bzr

c

dφ

dt
, (28)

r
d2φ

dt2 = 2Bz

c

dr

dt
− 2

dr

dt

dφ

dt
. (29)

Since the gravielectric acceleration dominates over the
gravimagnetic one, it suffices to take the latter into account
as a perturbation. Therefore, we treat Bg as the first-order
perturbation and expand φ(t) and r(t) around the solution
rc and φc determined by the gravielectric acceleration. For
r = rc + δr and φ = φc + δφ, in the zeroth-order, we
have the Kepler problem equations with Er (rc) calculated
numerically in Sect. 4. The corresponding solutions are ellip-
tic orbits. For simplicity, we will consider only the case
of circular orbits rc(φ) = rc = const . By substituting
Er (rc + δr) ≈ E(rc) + dE

dr (rc)δr in Eqs. (28) and (29),
we obtain

d2δr

dt2 = w2
0δr + 2rcw0

dδφ

dt
− dEr

dr

∣∣∣
rc

δr − 2Bz

c
rcw0,

rc
d2δφ

dt2 = −2w0
dδr

dt
,

where w0 = dφc
dt is angular frequency, induced by gravielec-

tric field. Thus, it can be explicitly written as w2
0 = Er (rc)

rc
.

Integrating the second equation, we get

dδφ

dt
= −2w0

rc
δr,

where we set the integration constant to zero. Substituting
this relation in the first equation, we find

d2δr

dt2 = −
(

3w2
0 + dEr

dr

∣∣∣
rc

)
δr − 2Bz

c
rcw0.
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From the numerical result, we see that f (E) is positive and

tends to zero at a large distance. Then, for 3 Er (rc)
rc

+ dEr
dr

∣∣∣
rc

=
Ω2 > 0, we find solutions

δr = −2Bzrcw0

cΩ2 + J sin(Ω(t − t0)),

δφ = δφc + 4Bzw
2
0

cΩ2 t + 2w0 J

Ωrc
cos(Ω(t − t0)),

where δrc, J , and t0 are defined by the corresponding initial
conditions.

It is interesting to estimate Ω2 at some distance rc, e.g.,
rc = 8 kpc = 113r0 which is the distance of the Sun from the
center of the galaxy. Then we have Ω = √

0.0025 × a0/r0 =
7.8 × 10−16 s−1 (the corresponding period is T = 2.6 × 108

years), Bz = 1.54 × 10−8a0, and δr = −2Bzrcw0/cΩ2 =
−0.8 × 10−8r0 = −0.12 a.u. The latter distance is approx-
imately equal to 30 solar radii. The angular frequency is
shifted by the value 4Bzw

2
0/cΩ

2 = 1.1 × 10−25 s−1 (the
corresponding period is T = 1.8 × 1018 years).

6 Conclusions

We investigated the model of DM halo with BEC core com-
posed of ultra-light bosonic particles. Solving the generalized
GPP equations for self-gravitating BEC we obtained the den-
sity profile of the DM halo and analyzed its core and envelope
structure. The density and velocity profiles were found for
two types of stable structures with topological charges (s = 0
and s = 1) of the BEC core.

Using this DM halo description, we investigated its gravi-
tational field and the impact of this field on the baryonic mat-
ter. The key result of our paper is that the observable effects,
predicted by the ULDM halo model, depend on the state of the
core. In particular, solitonic and vortex cores yield different
density and velocity distributions and thus different gravita-
tional fields. The doughnut-like density distribution (vanish-
ing at the vortex core) and vortex flows (rapidly increasing
at the vortex axis) of the BEC core can significantly mod-
ify both gravielectric and gravimagnetic components of the
gravitational field. We described the gravitational fields of
these two core configurations by using the gravimagnetism
approach. A dominant component of the gravitational field is
the gravielectric (Newtonian) one, which generates the rota-
tion of celestial bodies in the galaxy. The rotational velocity
induced by the halo with vortex is smaller close to the core
region but has the same asymptotics at large distances in
comparison with the non-rotating halo.

The first post-Newtonian component of the gravitational
field, which is called gravimagnetic, is induced by the rota-
tion of the BEC vortex core and appears only in the model
of a rotating halo. Although, as expected, the gravimagnetic

acceleration is much weaker than the gravielectric one, it can
affect the dynamics of baryonic matter in the halo, especially
in its inner region. In our simplified perturbation approach for
circular orbit gravimagnetic field yields radius and frequency
shift, and can also induce trajectory oscillations, depending
on initial conditions.

There are several possible directions in which the present
study could be extended. An analysis of gravitational fields
beyond the gravimagnetic approach is required in the central
region of the galaxy, due to the high rotational velocity of
BEC there. Furthermore, according to astrophysical obser-
vations, there is a supermassive black hole in the center of
our galaxy whose presence should be taken into account.
Finally, the gravitational effects of baryonic matter should
be included in further studies.
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Appendix A

Let us discuss the self-consistency of our model, which
makes use of the GEM approach to describe the first post-
Newtonian contribution to the gravitational field potential.
We assumed that a test particle (celestial body acted upon
by the gravitational field) propagates with a non-relativistic
speed v so that all terms of higher than linear order in O(v/c)
can be neglected in the equations of motion. As to DM, we
describe it by using the nonlinear Schrödinger equation with
gravitational potential Φg.

Since the hydrodynamical velocity in the vortex (the state
with s = 1) is u(r) = αcr0/r , it increases at small r and
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attains at r ∼ αr0 values of the order of c. Obviously, the
Newtonian treatment is not applicable in this region. There-
fore, we use the Klein-Gordon equation in order to describe
the relativistic equation of motion of bosons, as follows:

∇α∇αφ +
[(

mc

h̄

)2

−U (|φ|2)
]

φ = 0, (30)

where U = 2m
h̄2 gN |φ|2 and φ is the scalar field. We neglect

the effective temperature because only the core region is
investigated (the hydrodynamical velocity u(r) is nonzero
only in the core region) and ∇α denotes covariant derivative
in curved space-time.

The metric in the GEM approach reads (here all notations
are the same as in Sect. 2.2)

dS2 = gμνdx
μdxν =

(
1 − 2Φg

c2

)
(dx0)2

+ 4

c2

(
Agdx

)
dx0 +

(
−1 − 2Φg

c2

)
δi j dx

i dx j

and the Laplace operator is given by

∇α∇αφ = 1√−g
∂α(

√−ggαβ∂βφ),

where g = det (gμν) ≈ −1. Then we have

∇α∇αφ = 1

c2

(
1 − 2Φg

c2

)
∂2
t φ − 2Ai

g

c3 ∂t∂iφ

− 2

c3 ∂i (A
i
g∂tφ) − ∂i

[(
1 + 2Φg

c2

)
δi j∂ jφ

]
,

where fields Φg and Ag are time-independent. Taking into
account the gauge condition ∂i Ai

g = 0, we find

∇α∇αφ = 1

c2

(
1 − 2Φg

c2

)
∂2
t φ

−4Ai
g

c3 ∂t∂
iφ + ∂i

[(
1 + 2Φg

c2

)
∂iφ

]
.

To obtain a nonrelativistic approximation of the Klein-
Gordon equation we represent the scalar field in the form
φ = eimc2t/h̄ψ . Substituting this expression in the Klein-
Gordon equation and multiplying by e−imc2t/h̄ we get

1

c2

(
1 − 2Φg

c2

) [
∂2
t ψ + 2imc2

h̄
∂tψ −

(
mc2

h̄

)2

ψ

]

−4Ai
g

c3

[
∂t∂

iψ + imc2

h̄
∂ jψ

]
+

[
1 + 2Φg

c2

]
∂ j∂ jψ

+ 2

c2 ∂ jΦg∂ jψ +
[(

mc

h̄

)2

− 2m

h̄2 U (|ψ |2)
]

ψ = 0.

Neglecting terms of order of (u/c)2 and higher (Ag ∼ u/c),
we obtain

2im

h̄
∂tψ −

(
mc

h̄

)2

ψ + 2Φg

(
m

h̄

)2

ψ + ∂ j∂ jψ

+
[(

mc

h̄

)2

− 2m

h̄2 U (|ψ |2)
]

ψ = 0

Finally, after some straightforward simplifications, we derive
the Schrödinger equation in the form

i h̄∂tψ =
(

− h̄2

2m
∂ j∂ j + mΦg +U (|ψ |2)

)
ψ.

Thus, we conclude that the model is self-consistent if we
take into account only terms up to u/c, or, equivalently, in
the region, where the hydrodynamical velocity of vortex is
not relativistic (u � c).
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