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Abstract We present a class of tachyon-free (stable) AdS
as well as dS solutions in the context of type IIA orientifold
compactifications. This model is based on a type IIA setting
having geometric flux which, in addition, also includes the
usual NS–NS three-form flux H3 and the RR p-form fluxes
Fp for p ∈ {0, 2, 4, 6}. Although all the saxionic moduli
are stabilized, there remains a combination of the RR axions
which is flat, and the dS solution is realized through the D-
term effects induced by the geometric fluxes, without which
one can only have AdS solutions. Using flux scaling argu-
ments we also discuss how to engineer a parametric control in
these models, in the sense of realizing the respective AdS/dS
solutions in large volume, weak string-coupling as well as
large complex-structure regime. We also discuss open possi-
bilities (e.g. about the unknown status on having the complete
set of Bianchi identities) under which such tachyon-free dS
solutions may or may not be viable.
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1 Introduction

Realizing de-Sitter solutions and possible obstructions on the
way of doing it have been always in the center of attraction
since decades. In this regard, the historicity of efforts on
finding de-Sitter vacua in string theory (inspired) setups can
be classified into the following three categories:

• Existence: Starting from a simple model building with
minimal ingredients at hand, there have been several
de-Sitter no-go scenarios proposed from time to time.
For example, several no-go theorems forbidding de-Sitter
(dS) and inflationary realizations have been proposed in
a series of works [1–23], mostly in the context of type IIA
orientifold compactifications. In fact these no-go results
have played a central role in the recent revival of the
swampland conjectures [24,25]. However, the good thing
about any no-go result is the fact that it happens to hold
in a framework with a given set of assumptions, and for
a model builder aiming to realize de-Sitter solution, the
very first task is to explore the loopholes or the limits
under which the no-go necessities can be evaded, e.g. see
[26] for a recent charting of the (anti-) de Sitter vacua
from the perspective of ten-dimensional supergravities.
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In contrary to the (minimal) de-Sitter no-go scenarios, in
the meantime there have been several proposals for real-
izing (stable) de-Sitter vacua [27–46]; see [47,48] also
for the F-theoretic initiatives taken in this regard.

• Stability: After evading some no-go results by adding
more ingredients, the immediate question is about the
stability of the subsequent de-Sitter solution, especially
to ensure if those solutions are true minima or tachyonic
in nature. This is a quite crucial condition to check as there
have been plethora of de-Sitter solutions constructed by
simple attempts of evading the no-go results, many of
which eventually turned out to be tachyonic in nature [3–
5,10,17,49–51]. In fact the existence of such tachyonic
de-Sitter solutions demanded the need of refinements in
the original swampland conjectures [24,25] leading to
numerous amount of work with similar interests includ-
ing the Quintessence alternative [52–74] and the chal-
lenges it faces regarding the discrepancy in Hubble con-
stant [75,76].

• Viability: This step is usually combined with what we
referred to ‘Stability’ in the second step. However, given
the fact that this appears to cover a wider range of open
possibilities, it may be worth considering it separately.
Given that very little is known about the corrections
which induce the scalar potential pieces to perform mod-
uli stabilization, it is an important question to ask if the
de-Sitter vacua which pass the tests in the first two steps
are genuine or not. For example, the questions regard-
ing scale separation and field excursions in moduli space
[77–93] without breaking effective field theory (EFT)
assumptions, tadpole conjecture [94–96] and ways to
avoid it [97] may be considered in this class. In fact,
it happens very often that the scalar potential correc-
tions are known only in pieces and are sometimes dis-
covered/challenged with new updates, and in this regard,
a perfect check about viability may be considered as the
toughest task for string phenomenologists!

In the current work our aim is to analyse the flux vacua aris-
ing from a concrete type IIA CY orientifold model along the
aforesaid three steps. For that purpose we begin with con-
sidering a simple type IIA model which includes geometric
flux along with the standard three-form NS–NS (H3) flux
and the RR p-form Fp fluxes for p ∈ {0, 2, 4, 6}. In our
approach we first investigate the de-Sitter scenarios which
can be obtained by evading the standard no-go results, e.g.
those obtained from the moduli dynamics restricted to the
volume/dilaton plane [4–6]. In this process we make some
specific choice of fluxes such that

• The only geometric flux which arise in the scalar poten-
tial corresponds to the D-term effects which are positive
semi-definite. All the geometric flux contributions con-

tributing to the F-term effects in the scalar potential are
set to zero, which subsequently also facilitates in satis-
fying the NS–NS Bianchi identities without loosing any
D-term fluxes.

• We consider only some ‘suitable’ RR flux components
to be non-zero while setting many of those to zero. This
facilitates in making the tadpole terms independent of
one flux which subsequently does not get bounded by
O6-charge through D6 tadpole conditions, and turns out
to be useful in realizing larger volume and weaker string
coupling after the minimization process. However, recall-
ing the fact that Romans mass term along with geomet-
ric flux is needed to evade the previously known no-go
results, we always keep non-zero Romans mass along
with some geometric flux components to be non-zero.

The T -dual completions of the four-dimensional type II
effective theories by including the (non-)geometric fluxes
have been initiated in the toroidal context [8,98–102], and
a couple of interesting efforts have been initiated in estab-
lishing a concrete connection between the (non-)geometric
ingredients of the two theories in [103,104], and a full map-
ping with the T -duality at the level of NS–NS non-geometric
flux components and the two scalar potentials, has been pre-
sented in [105]. In [21], it was shown that a geometric type
IIA setup corresponds to a non-geometric type IIB under a
set of T -dual transformations relating the fluxes and mod-
uli of the two theories (e.g. see [105]). In fact many of the
(geometric) type IIA de-Sitter no-go scenarios have been T -
dualized to type IIB case with non-geometric fluxes [21],
which has refined the regime of de-Sitter search in various
possible ways.

However, regarding the viability there remains a subtle
and open issue. It is naively assumed that a consistent incor-
poration of the various (non-)geometric fluxes enriches the
compactification backgrounds which creates better possibil-
ities for model building, however one does not known how
many and which type of fluxes can be simultaneously turned-
on, respecting the various Bianchi identities and the tadpole
cancellation conditions. In this regard, there have been two
formulations for computing the Bianchi identities; the stan-
dard one mostly applicable to toroidal orientifolds involves
fluxes with non-cohomology indices [106–108], while in the
cohomology formulation fluxes are represented using the
non-trivial cohomology indices [103,104,107]. However, a
mismatch between the two sets of Bianchi identities of these
two formulations have been observed in [107,109] and stud-
ied in some good detail in [110,111]. The additional unknown
identities in the cohomology formulation, if they exist, might
be relevant for our de-Sitter solution along with the recent
studies performed in [112–117].

This article is organised as follows. Section 2 presents a
brief collection of the relevant ingredients about the generic
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type IIA models with geometric flux, having some discussion
about the possible scenarios in which the standard/known
de-Sitter no-go results can be evaded, along with present-
ing an explicit type IIA construction with geometric flux.
Subsequently, a detailed analysis of the AdS as well as dS
solutions is presented in Sect. 3. Finally we summarise our
results in Sect. 4 and provide the additional useful pieces of
information in Appendix A.

2 Type IIA orientifold with geometric flux

The four-dimensional effective potentials arising from type II
flux compactifications and their applications towards mod-
uli stabilization have been extensively studied in series of
works [27,118–127]. In particular, the study of nongeomet-
ric flux compactifications and their four-dimensional scalar
potentials have led to a continuous progress in various phe-
nomenological aspects such as towards moduli stabilization,
in constructing de-Sitter vacua and also in realizing the mini-
mal aspects of inflationary cosmology [98,99,107,108,112–
116,128–137]. In the context of Type II supergravity theo-
ries, such (non-)geometric fluxes can generically induce tree-
level contributions to the scalar potential for all the moduli
and hence can subsequently help in dynamically stabilizing
them through the lowest order effects. Moreover, the com-
mon presence of the nongeometric fluxes in Double Field
Theory (DFT), superstring flux-compactifications, and the
gauged supergravities has helped in understanding a variety
of interconnecting aspects in these three formulations along
with opening new windows for exploring some phenomeno-
logical aspects as well [98,101,102,106,109,130,138–153].
Moreover, the nongeometric flux compactification scenar-
ios also present some interesting utilisations of the symplec-
tic geometries [154,155] to formulate the effective scalar
potentials; e.g. see [156–158], which generalize the work of
[118,119] by including the nongeometric fluxes. The ten-
dimensional origin of the four-dimensional nongeometric
scalar potentials have been explored via an iterative series
of works in the supergravities [147–150,152,153,155,159–
163] and through some robust realization of the Double Field
Theory (DFT) reduction on Calabi Yau threefolds [164,165].
Moreover, a concrete connection among the type II effec-
tive potentials derived from DFT reductions and those of
the symplectic approach has been established in [156,157].
In this section we recollect the relevant ingredients for type
IIA Calabi–Yau orientifold models, and more details can be
directly refereed to [105].

2.1 A couple of scenarios evading the known dS no-go
results

The moduli dynamics in the low energy four-dimensional
effective supergravity theories are governed by the so-called

F- and D-term contributions which are encoded in the Käh-
ler potential, the (flux) superpotential and the gauge kinetic
functions. The four-dimensional geometric type IIA scalar
potential arising from these three ingredients can be also col-
lected as under,1

V ≡ (
V f6 + V f4 + V f2 + V f0

) + (Vh + Vω) + Vloc, (2.1)

where

V f0 = e4D ρ3 A1, V f2 = e4D ρ A2,

V f4 = e4D

ρ
A3, V f6 = e4D

ρ3 A4, (2.2)

Vh = e2D

ρ3 σ 3

(
A5 + σ 2 A6 + σ 4 A7

)
,

Vω = e2D

ρ σ 3

(
A8 + σ 2 A9 + σ 4 A10 + σ 6 A11

)
,

Vloc = e3D

σ
3
2

(
A12 + A13 σ 2

)
.

Here, apart from having the 4-dimensional dilaton modulus
D, we have introduced two other moduli, namely ρ and σ ,
via the redefinition in the overall volume (V) of the Calabi–
Yau threefold and its mirror volume U by considering their
respective two-cycle volume moduli ta and zi as below,

ta = ρ γ a, �⇒ V = ρ3, κabcγ
aγ bγ c = 6, (2.3)

zλ = σ θλ, �⇒ U = σ 3, kργ δθ
ρθγ θδ = 6,

where γ a’s denote some angular Kähler moduli corre-
sponding to the compactifying Calabi–Yau threefold while
θλ’s corresponds to the angular Kähler moduli on the mir-
ror Calabi–Yau threefold. Similarly, κabc denotes triple-
intersection numbers on the Calabi–Yau threefold while kργ δ

denotes the same for the respective mirror Calabi–Yau three-
folds. In addition, the quantities Ai ’s in Eq. (2.2) denote
some functions of fluxes, and the moduli other than vol-
ume modulus ρ, the complex-structure modulus σ and the 4-
dimensional dilaton D. For completeness, the explicit expres-
sions of Ai ’s are given in Eq. (A.7) of the Appendix A. In
fact one finds that all the Ai ’s except A9, A10, A12 and A13

are positive semi-definite.
There have been several no-go results against the de-Sitter

realization in type IIA based simple models, especially aris-
ing from the volume/dilaton analysis [2,5]. One possible
method to evade such no-go results is to include the geomet-
ric flux along with a non-zero Romans mass term. Several
attempts for de-Sitter realization have been made exploit-
ing this observations [5], however best to our knowledge
there is no proposed model which realizes non-tachyonic
de-Sitter solution using integer valued fluxes satisfying the

1 For completeness, we present the generic scalar potential (A.2) and
its simpler formulations in the Appendix A.
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Bianchi identities, at least all of the known ones. Let us
note that the scalar potential pieces in Eq. (2.2) have compli-
cated coefficients (depending on other moduli) and therefore
some of the well known de-Sitter no-go results arising from
minimalistic volume/dilaton analysis, e.g. [2,5,92,93], may
be easily evaded for the more generic constructions. This
scalar potential can be studied for the searching the stable
vacua through minimization of the moduli/axions, and in our
generic approach we take the following two steps:

• Step-1: First we consider the two-field volume/dilaton
analysis in order to rule out certain scenarios like those
proposed in [2,5].

• Step-2: Subsequently, in a more general analysis, one also
includes the dynamics of the complex-structure moduli
in order to further test the de-Sitter solutions obtained by
evading the constraints arising from the two-field (vol-
ume/dilaton) analysis of Step-1.

Using the derivatives for generic scalar potential as given in
Eq. (2.1) along with (2.2) w.r.t. the volume modulus ρ and the
dilaton D, we find the following extremization conditions,

∂V

∂D
= 0 �⇒ 4 V f6 + 4 V f4 + 4 V f2 + 4 V f0

+2 Vh + 2 Vω + 3 Vloc = 0,

ρ
∂V

∂ρ
= 0 �⇒ 3 V f6 + V f4 − V f2

−3 V f0 + 3 Vh + Vω = 0, (2.4)

Moreover, the volume-dilaton sector of the Hessian matrix
can be given as below,

H11 = 20V f6 + 20V f4 + 20V f2 + 20V f0

+6Vh + 6Vω + 12Vloc,

H12 = 12V f6 + 4V f4 − 4V f2 − 12V f0

+6Vh + 2Vω = H21, (2.5)

H22 = 9V f6 + V f4 + V f2 + 9V f0 + 9Vh + Vω.

In a nutshell, in order to investigate the possibility of de-
Sitter realization, we need to check if there is a simultaneous
solution to the following set of conditions (e.g. see [13]),

4 V f6 + 4 V f4 + 4 V f2 + 4 V f0 + 2 Vh

+2 Vω + 3 Vloc = 0, (2.6)

3 V f6 + V f4 − V f2 − 3 V f0 + 3 Vh + Vω = 0,

V ≡ V f6 + V f4 + V f2 + V f0 + Vh + Vω + Vloc > 0,

Tr [H] > 0,
(Tr [H])2

4
≥ Det[H] > 0.

Using Eq. (2.6), one can check that several possible scenarios
simply do not allow any dS solutions at all. For example, if
one does not include the geometric flux and/or the Romans
mass term, it is straight forward to check that the conditions in

Eq. (2.6) are never satisfied, which is something observed in
[2,5]. Therefore, one has to include non-zero geometric flux
as well as Romans mass term as a requirement for evading the
simplest kind of dS no-go constraint. Subsequently, there can
be many solutions in support of finding the de-Sitter solution,
however note that this analysis considers only the volume-
dilaton sector and does not include all moduli, and hence that
can have possibility to further rule out the solutions allowed
at this stage. However, in case there are some no-go against
finding de-Sitter in this sector itself, then there is no need
to include all the moduli together, and the result remains
conclusive. Now we present a couple of scenarios in which
dS no-go constraints can be evaded.

Scenario 1:

V f2 = 0, V f6 = 0, V f4 > 0, 10V f0 + 2V f4 + 3Vloc

= 4Vh, 3V f0 = V f4 + 3Vh + Vω,

Vh ≥ 0, 24V f4 + 9Vh

+
√

516V 2
f4

+ 972V f4Vh + 441V 2
h > 30V f0 ,

V f0 > V f4 + Vh . (2.7)

Scenario 2:

V f2 = 0, V f4 = 0, 24V f0 + 9Vloc + 2Vω = 6Vh,

Vh ≥ 0, Vω > 0, 3V f0 < 3Vh + 2Vω,

3V f0 = 3V f6 + 3Vh + Vω,

27Vh + 19Vω +
√

2025V 2
h + 1458VhVω + 265V 2

w < 72V f0 .

(2.8)

Scenario 3:

V f6 = 0, V f4 = 0,
7Vω

11

< V f2 < Vω, Vh >
4V f2

2 − 9VωV f2 + 5Vω
2

33V f2 − 21Vω

,

Vω > 0, Vloc = −8V f2 + 18Vh + 10Vω

9
,

V f0 = 3Vh + Vω − V f2

3
.

(2.9)

In the next section, we will present some concrete models
where we will present benchmark examples with specific
choice of fluxes such that the necessary conditions of some of
these scenarios can be met along with realizing the basic EFT
requirements such as large volume, large complex structure
and weak coupling values at the minimum.
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2.2 Investigating the possible flux scalings

In this subsection we will explore the possible flux scaling
which could be relevant in order to have some estimates of
moduli VEVs in the process of moduli stabilization in some
generic fashion. For this we need the following axionic flux
combinations which are needed to express the scalar poten-
tial,

f0 = e0 + ba ea + 1

2
κabc ba bb mc + 1

6
κabc ba bb bc m0

−ξ0 (H0 + ba wa0) − ξ k (Hk + ba wak)

−ξλ (Hλ + ba wa
λ),

fa = ea + κabc bb mc + 1

2
κabc bb bc m0 − ξ0 wa0

−ξ k wak − ξλ wa
λ,

fa = ma + m0 ba,

f0 = m0,

(2.10)

Here ba counts the NS–NS B2 axionic moduli and the
(ξ0, ξ k) arise from the three-form potential C3. In addition,
(e0, ea,ma,m0) denote to the flux quanta corresponding to
the RR fluxes (F6, F4, F2, F0) respectively while H and w

flux components corresponds to the NS–NS three-form flux
H3 and the geometric flux.

Scenario 1:

As mentioned in Eq. (2.7), demanding V f2 ∝ fa gab fb = 0
and V f6 ∝ f2

0 = 0 simultaneously, where gab is the moduli
space metric, we get,

e0 = ma ea
m0

− 1

3
κabc

ma mb mc

m2
0

+ ξ0 H0 + ξ k Hk + ξλ Hλ

− ma

m0

(
ξ0 wa0 + ξ k wak + ξλ wa

λ
)

,

ba = −ma

m0
. (2.11)

This shows that (h1,1
− +1) number of axions are fixed. Noting

the fact there one can always make a rotation of the flux orbits
[23] such that all the axionic dependences are absorbed in the
new flux combinations like those clubbed in Eq. (2.10). With
this observation one can satisfy both the demands V f2 = 0
and V f6 = 0 along with satisfying ma = 0 and e0 = 0
subject to imposing the following conditions on the axions,

ba = 0, ξ0 H0 + ξ k Hk + ξλ Hλ = 0, (2.12)

which results in a stronger constraint on the axions. More-
over, let us consider the flux scalings relevant for the saxionic
moduli by looking into the scalar potential pieces given in
Eq. (2.2). Assuming that V f2 = 0 = V f6 and all remaining

terms to be non-zero and comparable to one another at the
extremum, we anticipate the following flux scaling for the
corresponding moduli VEVs,

ρ ∼
√

A3

A1
∼

√
A5

A8
, eD ∼ 1

ρ3 σ 3/2

√
A5

A1
∼ 1

σ 3/2

A8

A3
,

σ 2 ∼ A5

A6
∼ A6

A7
∼ A8

A9
∼ A9

A10
∼ A10

A11
∼ A12

A13
.

(2.13)

Scenario 2:

As mentioned in Eq. (2.8), demanding V f2 ∝ fa gab fb = 0
and V f4 ∝ fa gab fb = 0 simultaneously we get,

ea = 1

2

κabc mb mc

m0
+ ξ0 wa0 + ξ k wak + ξλ wa

λ,

ba = −ma

m0
. (2.14)

In fact one can satisfy V f2 = 0 and V f4 = 0 along with satis-
fying ma = 0 and ea = 0 subject to imposing the following
conditions on the axions,

ba = 0, ξ0 wa0 + ξ k wak + ξλ wa
λ = 0, (2.15)

which results in a stronger constraint on the axions. Similar
to the previous scenario, the flux scalings relevant for the
saxionic moduli can be estimated by looking into the scalar
potential pieces given in Eq. (2.2). Assuming that V f2 = 0 =
V f4 and all remaining terms to be non-zero and comparable
to one another at the extremum, we anticipate the following
flux scaling for the corresponding moduli VEVs,

ρ ∼
(
A4

A1

)1/6

∼
√

A5

A8
, eD ∼ 1

ρ3 σ 3/2

√
A5

A1
,

σ 2 ∼ A5

A6
∼ A6

A7
∼ A8

A9
∼ A9

A10
∼ A10

A11
∼ A12

A13
.

(2.16)

Scenario 3:

As mentioned in Eq. (2.9), demanding V f6 ∝ f2
0 = 0 and

V f4 ∝ fa gab fb = 0 simultaneously we get,

ea + κabc bb mc + 1

2
κabc bb bc m0

= ξ0 wa0 + ξ k wak + ξλ wa
λ, (2.17)

e0 = 1

2
κabc ba bb mc + 1

3
κabc ba bb bc m0 + ξ0 H0

+ξ k Hk + ξλ Hλ.

In fact one can satisfy V f6 = 0 and V f4 = 0 along with sat-
isfying e0 = 0 and ea = 0 subject to imposing the following
conditions on the axions,
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ξ0 wa0 + ξ k wak + ξλ wa
λ

= κabc bb mc + 1

2
κabc bb bc m0,

ξ0 H0 + ξ k Hk + ξλ Hλ

= −1

2
κabc ba bb mc − 1

3
κabc ba bb bc m0. (2.18)

Similar to the previous scenario, the flux scalings relevant
for the saxionic moduli can be estimated by looking into
the scalar potential pieces given in Eq. (2.2). Assuming that
V f4 = 0 = V f6 and all remaining terms to be non-zero and
comparable to one another at the extremum, we anticipate the
following flux scaling for the corresponding moduli VEVs,

ρ ∼
√

A2

A1
∼

√
A5

A8
, eD ∼ 1

ρ3 σ 3/2

√
A5

A1
, (2.19)

σ 2 ∼ A5

A6
∼ A6

A7
∼ A8

A9
∼ A9

A10
∼ A10

A11
∼ A12

A13
.

We will discuss the relevance of these flux scalings in more
explicit settings in the upcoming section.

2.3 Constructing a concrete type IIA orientifold model

In [21] it has been shown that the type IIA geometric flux
models and a certain class of the type IIB non-geometric
models (with special solutions of Bianchi identities) are T -
dual to each other in the sense that there are certain trans-
formations on the moduli/fluxes which exchange the scalar
potential on the one theory with the same on the other. Now,
we consider a simple type IIA construction which will be used
to investigate the possibility of realizing tachyon-free AdS,
Minkowskian and dS solutions, and their type IIB analogue
can be generically read-off from the dictionary presented in
[21].

In order to make some simplification for the explicitness
of the computations, we consider the following topological
quantities for the compactifying threefold,2

h1,1
− = 1, h1,1

+ = 1, h2,1 = 1. (2.20)

Such an orientifold leads to the following fluxes/moduli in
the 4D type IIA model, which has six real moduli and 10 flux
parameters to begin with. These are collected as below,

F term fluxes : e0, e1, m1, m0, H0,

H1, w10, w1
1, (2.21)

D term fluxes : ŵ1
0, ŵ11,

Moduli : ρ, σ, D, b1, ξ1, ξ0.

2 Given the fact that splitting of the h2,1 index in {k̂, λ} ≡ {0, k, λ} is
such that k + λ = h2,1, and so for our particular model, we take k = 0
and λ = 1. This means that the complex variables Nk , which are like
the so-called odd-moduli Ga in the dual Type IIB picture, will be absent
along with the flux components involving the k-indices.

We denote D-term fluxes with a hat in order to distinguish
them from the geometric fluxes appearing in the F-term con-
tributions. Subsequently, the total scalar potential arising
from F- and D-terms can be given by Eq. (2.2) with the fol-
lowing simpler form of the Ai coefficients,

A1 = 1

4
(f0)

2
, A2 = 3

4
(f1)2, A3 = 1

12
f2
1 ,

A4 = 1

4
f2
0 , A5 = 1

4
(H0 + b1 w10)

2, A6 = 0,

A7 = 3

4
(H1 + b1 w1

1)2, A8 = 1

12
w2

10,

A9 = w10 w1
1 + 1

4 κ̂111
ŵ2

11, A10 = −3

4
(w1

1)2

+ 1

2 κ̂111
ŵ11 ŵ1

0, A11 = 1

4 κ̂111
(ŵ1

0)2,

A12 = 1

2

(
m0 H0 − m1 w10

)
,

A13 = −3

2

(
m0 H1 − m1 w1

1
)

. (2.22)

where we have used the triple intersection number κ111 = 6
and the axionic flux combinations f0, f1 etc. are defined as
below,

f0 = e0 + b1 e1 + 3 (b1)2 m1 + (b1)3 m0

−ξ0 (H0 + b1 w10) − ξ1 (H1 + b1 w1
1),

f1 = e1 + 6 b1 m1 + 3 (b1)2 m0 − ξ0 w10 − ξ1 w1
1,

f1 = m1 + b1 m0, f0 = m0, (2.23)

Here we note that all the coefficients except A9, A10, A12

and A13 are positive semidefinite, which is something which
we have pointed out earlier for the generic case as well. In
other words, apart from the local/tadpole piece in the scalar
potential with a dilaton factor e3D encoded in the coefficients
A12 and A13, all the other pieces are positive semidefinite
except for the two pieces involving the geometric flux w1

1

as seen from the coefficients A9 and A10. Therefore, for the
purpose of hunting for the de-Sitter solutions, it would be a
good idea to set this geometric flux component to zero, i.e.
w1

1 = 0. However this will subsequently have an impact on
the following two Bianchi identities,

H1 ŵ11 = H0 ŵ1
0, w1

1 ŵ11 = w10 ŵ1
0. (2.24)

Setting w1
1 = 0 will demand either to set w10 = 0 or ŵ1

0 =
0. However, given that we do not want to switch-off any of the
(positive semidefinite) D-term piece in the scalar potential
which could possibly be useful to make the dS uplift, we
take w10 = 0. This means that we are switching-off all the
geometric flux components in the F-term contributions, and
the only geometric flux effects are those arising from the
D-term contributions.

123



Eur. Phys. J. C (2023) 83 :196 Page 7 of 19 196

3 Analyzing the flux vacua

It has been observed in [13] that having a non-zero Romans
mass m0 with the presence of any one of the F2, F4 or F6

fluxes can evade the simplest version of the dS no-go con-
ditions obtained in the volume-dilaton analysis. This can be
also seen from the Scenario-1 which we presented in the pre-
vious section. Now we take the flux choice for the RR flux
such that

e0 = 0, m1 = 0. (3.1)

The type IIA scalar potential which we have at this stage can
be expressed in the following simple form,

V = e4D

4 ρ3

[
(f0)

2 + ρ2

3
(f1)

2 + 3 ρ4 (f1)2 + ρ6 (f0)2
]

+ e2D

4 ρ3 σ 3

[
H2

0 + 3 σ 4(H1)2 + ρ2 σ 2 ŵ2
11

κ̂111

×
(

1 + σ 2 H1

H0

)2]
+ e3D

2 σ 3/2

[
m0

(
H0 − 3 σ 2 H1

)]
,

(3.2)

where we have used the first Bianchi identity of Eq. (2.24)
along with the following simplified axionic flux combina-
tions,

f0 = b1 e1 + (b1)3 m0 − ξ0 H0 − ξ1 H1, f1 = e1

+3 b1 b1 m0, f1 = b1 m0, f0 = m0. (3.3)

Using the scalar potential in Eqs. (3.2) and (3.3), it turns out
that the extremization of three axions ξ0, ξ1 and b1 results in
satisfying the following two conditions,

f0 = f1 = 0, (3.4)

where we keep the Romans mass parameter f0 = m0 	= 0
as that is necessary to avoid the well-known de-Sitter no-
go theorems for geometric type IIA scenarios [3,5]. Using
Eq. (3.3), we find that this choice of RR-flux helps in setting
axions b1 to zero and subsequently, only two (out of three)
axionic moduli get stabilized as below,

〈b1〉 = 0, 〈ξ0〉 H0 + 〈ξ1〉 H1 = 0. (3.5)

We note that the process of axion minimization has also set
A1 = 1

4 m
2
0, A2 = 0 = A4 and A3 = 1

12 e
2
1. Now one can

have some estimates about the flux scalings corresponding
to the simplified scalar potential in Eq. (3.2) which turns out
to be given as below,

e−D ∼ (e1)
3
2

(m0)
1
2 (H0)

1
4 (H1)

3
4

, ρ ∼
√

e1

m0
, σ ∼

√
H0

H1 ,

(3.6)

which shows that the string coupling gs = e〈ϕ〉 obtained from
the VEV of the ten dimensional dilaton (ϕ) should scale as
follows,

e−ϕ = e−D

√V ∼ (e1)
3
4 (m0)

1
4

(H0)
1
4 (H1)

3
4

. (3.7)

Note that similar flux scalings for saxion VEVs have been
observed for the rigid toroidal orientifold of T6/(Z3 × Z3)

in [166], however we also have complex-structure moduli in
our setup.

3.1 AdS vacua: without D-terms

Now, let us have the exact conditions for moduli stabilization
in the absence of D-term effects, with the aim to engineer the
fluxes so that we could look for the possibility of de-Sitter
solutions by adding such effect as a second step.

In the absence of the D-term contribution, i.e. for ŵ11 =
0 = ŵ1

0, the saxionic extremization conditions can be satis-
fied for the following two sets of AdS solutions:

AdS1 : e−〈D〉 = −2m0

5 H0
〈ρ〉3 〈σ 〉 3

2 , 〈σ 〉2 = −H0

H1
,

〈ρ〉2 = ± 5 e1

9m0
,

〈V 〉 = −3 e4〈D〉 〈ρ〉3 m2
0

25
= − 3 e2〈D〉 H2

0

4 〈ρ〉3 〈σ 〉3 ; (3.8)

AdS2 : e−〈D〉 = −4m0

5 H0
〈ρ〉3 〈σ 〉 3

2 ,

〈σ 〉2 = − H0

4 H1 , 〈ρ〉2 = ± 5 e1

3
√

6m0
,

〈V 〉 = −2 e4〈D〉 〈ρ〉3 m2
0

25
= − e2〈D〉 H2

0

8 〈ρ〉3 〈σ 〉3 . (3.9)

The Hessian analysis further shows that AdS1 corresponds
to a tachyonic solution while AdS2 is a minimum. Given
that saxionic VEVs have to be positive, we need to choose
m0 and H0 of opposite sign, and subsequently there can be
two possibilities for choosing the sign of the fluxes,

(i). m0 > 0, e1 < 0, H0 < 0, H1 > 0, (3.10)

(i i). m0 < 0, e1 > 0, H0 > 0, H1 < 0.

Note that the tadpole contributions in both the cases are
Nflux < 0 which is consistent with the standard literature of
type IIA models without geometric flux (e.g. see [166,167]).
Without loss of any generality, let us take the first choice.
Subsequently, the two AdS solutions can be equivalently
expressed entirely in terms of fluxes as below,
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AdS1 : e−〈D〉 = 2
√

5 (−e1)
3
2

27
√
m0 (−H0)

1
4 (H1)

3
4

,

〈ρ〉 =
√

5

3

√
− e1

m0
, 〈σ 〉 =

√

−H0

H1 ,

e−〈ϕ〉 = 2 (−e1)
3
4 m

1
4
0

3
3
2 5

1
4 (−H0)

1
4 (H1)

3
4

,

〈V 〉 = − 59049 (m0)
5
2 (−H0) (H1)3

400
√

5 (−e1)
9
2

; (3.11)

AdS2 : e−〈D〉 =
√

5 (−e1)
3
2

9 × 6
1
4
√
m0 (−H0)

1
4 (H1)

3
4

,

〈ρ〉 =
√

5

2
1
4 3

3
4

√
− e1

m0
, 〈σ 〉 = 1

2

√

−H0

H1 ,

e−〈ϕ〉 = 2
1
8 (−e1)

3
4 m

1
4
0

3
9
8 5

1
4 (−H0)

1
4 (H1)

3
4

,

〈V 〉 = − 1458 × 2
1
4 3

3
4 m

5
2
0 (−H0) (H1)3

25
√

5 (−e1)
9
2

.

These analytic results are extremely useful in the many ways.
First let us observe that the exact AdS solutions in Eq. (3.11)
confirm the previous estimates about the flux scalings for the
saxionic VEVs as given in Eqs. (3.6) and (3.7). Also such flux
scaling of the saxionic VEVs can help in determining the flux
regions where the solutions can be physically acceptable and
trustworthy. In this regard, we make the following points:

• We observe that choosing suitably large values for the
|e1| flux can be used to realize larger VEVs for volume
modulus ρ along with weaker values for the string cou-
pling gs = e〈ϕ〉. Given that there are no non-geometric
fluxes present in the model, the e1 flux is not restricted
by the tadpole condition as well.

• Also, we observe that the m0 flux should be taken to a
minimum consistent value in order to realize large VEVs
for volume modulus ρ as well as the having weak cou-
pling, and therefore we prefer to setm0 = 1 in our numer-
ical analysis.

• It is obvious that the H1 flux should be taken to mini-
mum values in order to have larger VEV for the complex
structure modulus σ along with weak string coupling,
and therefore we prefer to set H1 = 1 in our numerical
analysis.

• Although larger values for H0 could also help for realiz-
ing large VEVs for the complex-structure modulus (σ ),
however this can happen only at the cost of enhancing
the string coupling by a reduction of the dilaton factor
e−ϕ . Thus we observe that large complex structure and
weak coupling requirements are apparently contradictory
to each other with respect to the choice of the H0 flux,

and one has to find a viable balance to keep both in the
physically valid regime.

• However, choosing larger values for |e1| flux can help in
having weak-coupling and large volume realizations, and
also leaves a scope for large complex structure realization
by keeping the factor |e1|/|H0| large while having |H0|
large as well.

• With these scaling arguments, we find that the moduli
dynamics can be mainly controlled by two fluxes |e1| and
|H0|. However, demanding |e1|/H0 and H0 to take large
values has to be balanced by the need of large tadpole
charge compensation, and so one would not prefer to
take too large values for |H0| and should be satisfied with
those which are just enough to ensure 〈σ 〉 > 1.

• A couple of benchmark numerical samplings are pre-
sented in Tables 1 and 2.

3.2 dS vacua: with D-terms

In this section we investigate the effects of including D-term
contributions which are generically positive semi-definite in
nature, and hence one may expect to realize stable de-Sitter
solution. Just to have some naive estimates (which may or
may not be true as we will explore later on), momentarily
if we simply assume that the stabilized values of the mod-
uli/axions do not change significantly, then the D-term con-
tributions to the scalar potential at the previously realized
AdS minimum in Eq. (3.11) may be given as,

〈VD〉 =
〈
e2D

4 ρ σ

ŵ2
11

κ̂111

(
1 + σ 2 H1

H0

)2
〉

= 2187 × 3
1
4 (m0)

3
2 (H1)2 ŵ2

11

80
√

5 × 2
1
4 κ̂111 (−e1)

7
2

, (3.12)

where we have used the saxion/axion VEVs corresponding to
theAdS2 solution in (3.11) which is a tachyon free minimum
in the absence of D-terms. This naive estimate shows that a
priory there appears to be a chance of uplifting the AdS to
some dS solution under the assumption that the previously
stabilized values remain (almost) fixed at their respective
minimum. For that we need,

〈V 〉 = 〈VF 〉 + 〈VD〉

= − 1458 × 2
1
4 × 3

3
4 (m0)

5
2 (−H0) (H1)3

25
√

5 (−e1)
9
2

+2187 × 3
1
4 (m0)

3
2 (H1)2 ŵ2

11

80
√

5 × 2
1
4 κ̂111 (−e1)

7
2

≥ 0, (3.13)

which can be satisfied if,

ŵ2
11 ≥ 32

√
2

5
√

3
× (m0) (−H0) (H1)

(−e1)
κ̂111. (3.14)
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Table 1 Numerical samplings for tachyonic and stable AdS solutions where other fluxes are set as: e0 = 0, m1 = 0, m0 = 1, H1 = 1 and
ŵ11 = 0, leading to (two of the three) axions being stabilized as 〈b1〉 = 0 and 〈ξ0〉 H0 + 〈ξ1〉 H1 = 0

Sample e1 H0 〈ρ〉 〈σ 〉 〈e−D〉 〈V〉 〈e−ϕ〉 Vacua type

S1 −50 −5 5.27046 2.23607 39.1619 146.402 3.23661 Tachyonic AdS

5.83273 1.11803 37.5333 198.433 2.66446 Stable AdS

S2 −75 −5 6.45497 2.23607 71.945 268.957 4.38691 Tachyonic AdS

7.1436 1.11803 68.9531 364.545 3.61142 Stable AdS

S3 −100 −5 7.45356 2.23607 110.767 414.087 5.44331 Tachyonic AdS

8.24872 1.11803 106.16 561.254 4.48108 Stable AdS

S4 −100 −50 7.45356 7.07107 62.2886 414.087 3.061 Tachyonic AdS

8.24872 3.53553 59.6983 561.254 2.51989 Stable AdS

Table 2 Hessian Eigenvalues and the scalar potential VEVs corresponding to the AdS solutions for the flux samplings presented in Table 1. This
shows that the first AdS solution is tachyonic while the second AdS solution is tachyon free, but having a flat axionic combination

Sample 〈V0〉 · 106 Eigenvalues of 〈Vi j 〉 · 106

S1 −7.46917 {8.88289, 3.00399,−1.49383, 0.0619177,−0.00844809, 0}
−7.99900 {50.7392, 3.29533, 1.05382, 0.0647094, 0.000892266, 0}

S2 −1.20465 {0.954538, 0.32024,−0.240931, 0.00296067,−0.000407189, 0}
−1.29011 {7.57355, 0.352403, 0.122203, 0.00309812, 0.0000428714, 0}

S3 −0.330094 {0.196128,−0.0660188, 0.0656144, 0.000342326,−0.0000472137, 0}
−0.353509 {1.99277, 0.0722849, 0.0261409, 0.000358322, 4.9654 × 10−6, 0}

S4 −3.30094 {1.96242, 0.887765,−0.0660188,−0.0335668, 0.010819, 0}
−3.53509 {4.32243, 0.892626, 0.121494, 0.0112401, 0.00386789, 0}

Just to have some rough estimate, for the flux choices taken in
the samples S1–S4, the requirement in Eq. (3.14) simplifies
into the following form,

ŵ2
11 ≥ λ κ̂111, where

λ =
{

0.522558, 0.348372, 0.261279, 2.61279

}
.

So there appears to be a hope of uplifting the previous AdS
solution to some de-Sitter for some choice of geometric flux
and the triple intersection number. However, recall again that
in arriving at this naive estimate, we have assumed that the
previous VEVs of saxions are not significantly changed after
including the D-term, which may not turn out to be correct,
given that it depends on all the three saxions ϕ, ρ and σ and
every piece in the scalar potential is on the same footing, in
the sense of having no hierarchy to begin with.

Now we turn to explicitly solving the extremization condi-
tions to investigate about the possibility dS solutions. Using
the flux scaling arguments suggested in Eqs. (3.6) and (3.7)
along with their validation for the absence of geometric flux
scenarios in Eq. (3.11) we take the following ansatz to begin
with,

〈b1〉 = 0, 〈ξ1〉 = −H0

H1 〈ξ0〉,

e−〈D〉 = α1 (−e1)
3
2

√
m0 (−H0)

1
4 (H1)

3
4

,

〈ρ〉 = α2

√
− e1

m0
, 〈σ 〉 = α3

√

−H0

H1 . (3.15)

In addition, we introduce a new parameter α4 defined through
the following flux ratio which is induced only through the D-
term effects,

α4 = e1 ŵ2
11

κ̂111 m0 H0 H1 . (3.16)

By considering these ansatz, similar to the previously realized
AdS solutions which correspond to the flux choice considered
as {m0 > 0, e1 < 0, H0 < 0, H1 > 0}, we find that it does
not solve the extremization conditions for {α1 > 0, α2 >

0, α3 > 0, α4 ≥ 0}. Therefore we conclude that the previous
AdS solutions cannot be lifted to Minkowskian or dS solution
by adding the D-terms of the type we considered.

However we find that there can be new Minkowskian/dS
solutions (which does not arise as an uplifted version of the
previous AdS solutions) for a different type of flux choice
given as {m0 > 0, e1 < 0, H0 > 0, H1 > 0} and for
exploring that possibility we consider the following ansatz,

〈b1〉 = 0, 〈ξ1〉 = −H0

H1 〈ξ0〉, 〈τ 〉 = e−〈D〉
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= α1 (−e1)
3
2

√
m0 (H0)

1
4 (H1)

3
4

> 0, (3.17)

〈ρ〉 = α2

√
− e1

m0
> 0, 〈σ 〉 = α3

√
H0

H1 > 0,

α4 = (−e1) ŵ2
11

κ̂111 (m0) (H0) (H1)
, ∀αi > 0.

To elaborate more on it we use Eq. (3.17) to get the following
expressions for the three saxion extremization conditions,

∂τV = − (m0)
3 (H0)

5
4 (H1)

15
4

6(−e1)6α5
1 α3

2α3
3

[
9α1α

3/2
3

(
1 − 3α2

3

)
α3

2

+2
(

3α4
2 + 1

)
α3

3α2
2 + 3α2

1

(
α2

2α4α
6
3

+
(

2α4α
2
2 + 3

)
α4

3 + α2
2α4α

2
3 + 1

)]
, (3.18)

∂σV = (m0)
5
2 (H0)

1
2 (H1)

7
2

4 (−e1)
9
2 α3

1 α3
2 α4

3

[(
α2

3 + 1
) (

α1

(
3α2

2α4α
4
3

+
(

3 − α2
2α4

)
α2

3 − 3
)

− 3α3
2α

3/2
3

)]
,

∂ρV = − (m0)
3 (H0) (H1)3

12 (−e1)5 α4
1 α4

2 α3
3

[
α2

2

(
1 − 9α4

2

)
α3

3 + 3α2
1

(
α2

2α4α
6
3 +

(
2α4α

2
2 + 9

)
α4

3 + α2
2α4α

2
3 + 3

)]
,

while the scalar potential defined through Eqs. (3.2) and (3.3)
takes the following form,

V = (m0)
5
2 (H0) (H1)3

12(−e1)
9
2 α4

1α3
2α3

3

[
6α1α

3/2
3

(
1 − 3α2

3

)
α3

2

+
(

3α4
2 + 1

)
α3

3α2
2 + 3α2

1

(
α2

2α4α
6
3

+
(

2α4α
2
2 + 3

)
α4

3 + α2
2α4α

2
3 + 1

)]
. (3.19)

Subsequently one can get a Minkowskian or dS solution by
solving the extremization conditions, in addition to consis-
tently demanding the following constraint,

α4 ≥ −6α1α
3/2
3

(
1 − 3α2

3

)
α3

2 + (
3α4

2 + 1
)
α3

3α2
2 + α2

1

(
9α4

3 + 3
)

3α2
1α2

2α2
3

(
α2

3 + 1
)

2
,

(3.20)

where equality corresponds to the Minkowskian solution.
Interestingly we find that, there is a unique numerical solu-
tion for the Minkowskian case which corresponds to solving
four polynomial equations in four unknowns αi ’ resulting in,

α1 = 0.386877, α2 = 1.03182,

α3 = 1.84403, α4 = 0.424169. (3.21)

Note that these αi ’s can generically be some irrational num-
bers and a true Minkowskian solution will demand them to be

take those precise values. However for numerical estimates
we have presented rounded off figures for these αi parame-
ters.

Numerical samplings for Minkowskian solutions:

For a set of flux choice with non-zero D-term flux ω̂11, the
results for various VEVs of the moduli/axions along with
their Hessian Eigenvalues are mentioned in Tables 3 and 4.

Numerical samplings for de-Sitter solutions:

We have learnt from the numerical analysis done so far that
for slightly larger values of the uplifting parameter α4 as com-
pared to the Minkowskian value mentioned in Eq. (3.21),
one can realize tachyon-free dS solutions. For illustration
purpose we take the flux sampling S4 and show the details
on dS uplifting starting from AdS solutions via crossing the
Minkowskian value, by simply varying the α4 parameter.
This is presented in Table 5.

3.3 Comments on viability of the dS vacua

In this section we present some comments about the viability
of the tachyon-free dS solutions we have obtained, and try
to explore under which conditions their stability/existence
could be questioned, though we do not anticipate such pos-
sibilities to occur generically, in the sense of creating issues
for the class of AdS/dS solutions we have presented.

On the integrality of the fluxes

Let us recall that our AdS solutions are realized with inte-
ger valued fluxes while in order to get the Minkowskian/dS
solution, we need to find fluxes such that one satisfies the
following condition according to the α4 parameter defined in
Eq. (3.16),

α4 = (−e1) ŵ2
11

κ̂111 m0 H0 H1 ≥ 0.424169 . . . (3.22)

Note that the equality corresponds to the Minkowskian solu-
tion for which α4 needs to satisfy Eq. (3.20) and this generi-
cally leads to an irrational value of α4. Therefore, for integral
values of fluxes and the triple intersection number κ̂111, a truly
Minkowskian solution cannot be achieved. However for de-
Sitter solutions one would need to take slightly larger values
for α4 as compared to the bound given in Eq. (3.22). For a
chosen value of the α4 parameter, we tabulate the positive real
values for {α1, α2, α3} obtained as the possible solutions to
the extremization conditions which are presented in Table 6.
In Table 6 we have also introduced a new parameter γ0 which
determines the sign of the VEV of the scalar potential at a
given extremum following from Eq. (3.19). This parameter
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Table 3 Numerical samplings corresponding to the Minkowskian solution, i.e. 〈V0〉 = 0. Other flux parameters are set as: e0 = 0, m1 = 0, m0 =
1, H1 = 1, which leads to axions being stabilized as: 〈b1〉 = 0 and 〈ξ0〉 H0 + 〈ξ1〉 H1 = 0

Sample e1 H0 〈ρ〉 〈σ 〉 〈e−D〉 〈V〉 〈e−ϕ〉
S1 −50 5 7.29606 4.12337 91.4714 388.388 4.64144

S2 −75 5 8.93581 4.12337 168.044 713.514 6.29102

S3 −100 5 10.3182 4.12337 258.72 1098.53 7.80593

S4 −100 50 10.3182 13.0392 145.489 1098.53 4.3896

Table 4 Hessian Eigenvalues for the Minkowskian solution, i.e. 〈V0〉 = 0 corresponding to the flux samplings of Table 3. This shows that there
are no tachyons present, though there is an axionic combination still remaining flat

Sample Eigenvalues of 〈Vi j 〉.106

S1 {0.531391, 0.23274, 0.104622, 0.000267061, 0.0000988211, 0}

S2 {0.0697052 , 0.0307571 , 0.0112366 , 0.0000127765 , 4.724.10−6 , 0 }

S3 {0.0175195 , 0.00689047 , 0.00230835 , 1.478.10−6 , 5.462.10−7 , 0 }

S4 {0.09601 , 0.0242602 , 0.0125822 , 0.00135235 , 0.0000172598 , 0 }

Table 5 The numerical samplings for AdS and dS (via crossing the Minkowskian) solutions for a range of values for the α4 parameter. The flux
parameters for model S4 are: e1 = −100, e0 = 0, m1 = 0, m0 = 1, H0 = 50, H1 = 1. The plots showing the uplift are presented in Fig. 1

Model α4 〈V 〉.109 〈ρ〉 〈σ 〉 〈e−D〉 〈V〉 〈e−ϕ〉
S4 0.42 −3.68518 10.2449 13.1564 141.826 1075.28 4.32508

S4 0.4242 0.026406 10.3188 13.0384 145.518 1098.71 4.39011

S4 0.425 0.700693 10.3339 13.0152 146.278 1103.55 4.40335

S4 0.43 4.67438 10.4382 12.8638 151.559 1137.29 4.49412

Table 6 For a chosen value of the (uplifting) parameter α4, the set of
positive real solutions for the other three parameters {α1, α2, α3} are
obtained by solving the three extremization conditions in Eq. (3.18).

The parameter determining the sign of potential at a given extremum is
defined in Eq. (3.24). The Minkowskian solution defined by Eq. (3.21)
lies in the middle of the table

α4 α1 α2 α3 γ0 Vacua type

0.42 0.377135 1.02449 1.8606 −0.0737035 Stable AdS

0.42 0.743727 1.2576 1.60788 0.171904 Tachyonic dS

0.4242 0.386954 1.03188 1.8439 0.000528121 Stable dS

0.4242 0.717112 1.24318 1.61508 0.184542 Tachyonic dS

0.425 0.388974 1.03339 1.84063 0.0140139 Stable dS

0.425 0.711939 1.24034 1.61656 0.187088 Tachyonic dS

0.43 0.403017 1.04382 1.81921 0.0934877 Stable dS

0.43 0.678523 1.2217 1.62688 0.204158 Tachyonic dS

γ0 is subsequently defined as below:

〈V 〉 = γ0
(m0)

5
2 (H0) (H1)3

(−e1)
9
2

, (3.23)

where

γ0 = 1

12 α4
1α3

2α3
3

[
6α1α

3/2
3

(
1 − 3α2

3

)
α3

2 +
(

3α4
2 + 1

)
α3

3α2
2

+3α2
1

(
α2

2α4α
6
3 +

(
2α4α

2
2 + 3

)
α4

3 + α2
2α4α

2
3 + 1

)]
.

(3.24)
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Fig. 1 One dimensional slices of scalar potential showing AdS to dS uplifting by α4 parameter

Using the set of values for αi parameters from Table 6 one can
easily determine the VEVs of saxions for a chosen flux values
using Eq. (3.17). Moreover, a detailed numerical analysis
shows that for α4 ≥ 0.45, the three extremization conditions
in Eq. (3.18) do not result in positive real solutions for the
set of parameters {α1, α2, α3} which are used for determining
the VEVs of their respective saxions. Given that one needs to
satisfy the bound in Eq. (3.22) this shows that there is only a
narrow width for α4 parameter which is available for having
the dS solutions. This can be estimated as:

0.42417 ≤ α4 = (−e1) ŵ2
11

κ̂111 m0 H0 H1 ≤ 0.44. (3.25)

Note that each of the quantities defining the parameter α4 as
seen above, are either fluxes or triple intersection numbers
and hence should usually take integral values. Moreover as
we have already argued to set m0 = 1 and H1 = 1 for hav-
ing large VEVs for volume modulus and complex-structure
modulus respectively, we have the following condition on the
remaining quantities:

0.42417 ≤ α4 = (−e1) ŵ2
11

κ̂111 H0
≤ 0.44. (3.26)

Note that increasing |e1| to have larger volume will demand
either choosing quite (unnaturally) large value of intersection
number κ̂111 or a large value of H0 flux in order to stay withing

the required range of the uplifting parameter α4. However,
let us not forget that H0 flux enters in the tadpole relation
and hence can be bounded, unlike the |e1| flux. So one may
not have much freedom to enlarge H0 flux to a high value,
though one cannot deny to have this possibility in generic
CY orientifold models.

Now this suggests that there is a need for a delicate choice
of fluxes as |e1| large is needed for large volume VEV and
a couple of such flux samplings with α4 = 0.44, covering a
bit the extreme possibilities can be taken as below,

S5 : e1 = −44, ŵ11 = 1, κ̂111 = 20, H0 = 5,

S6 : e1 = −44, ŵ11 = 1, κ̂111 = 10, H0 = 10.

(3.27)

Scale separation arguments

Let us note that our flux choice is such that one of the RR
fluxes, namely |e1|, which governs the VEV of the overall
volume modulus, does not appear in the tadpole condition
at all, and hence it is not restricted by any upper bound.
Subsequently, it is possible to realize quite large values for
the VEV of the overall volume of the compactifying sixfold,
i.e. 〈V〉 � 1 along with weak string coupling 〈gs〉 � 1 as
can be seen from the benchmark models presented in Tables 5
and 7. Therefore, it is expected that the string scale (Ms)
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Table 7 Numerical samplings for the two new benchmark model defined in Eq. (3.27) which give stable and tachyonic dS solutions for integral
valued fluxes and the triple intersection numbers

IIA α4 〈V 〉.108 〈ρ〉 〈σ 〉 〈e−D〉 〈V〉 〈e−ϕ〉 Vacua type

S5 0.44 4.54497 7.12593 3.9504 86.8912 361.847 4.56786 Stable dS

S5 0.44 4.95734 7.79555 3.70697 116.96 473.741 5.37363 Tachyonic dS

S6 0.44 9.08994 7.12593 5.58671 73.0665 361.847 3.8411 Stable dS

S6 0.44 9.91469 7.79555 5.24245 98.3513 473.741 4.51866 Tachyonic dS

and the Kaluza-Klein states (MKK) will be separated from
the AdS/dS scale for appropriate choice of fluxes.

Obstructions from the Bianchi identities

For type IIA orientifold case, it has been found [107,111]
that the two known formulations of Bianchi identities do
not result in equivalent sets of constraints on the fluxes, and
there are always some “missing identities” which can have
impact on the vacua realized within the so-called symplectic
or cohomology formulation of (non-)geometric fluxes. So it
might be possible that in such a simple setting which allows
only a few number of moduli, it could get hard to consistently
turn-on all the needed (geometric) fluxes.

For our simple type IIA setting we have six non-zero fluxes
in the low energy dynamics, namely {e1,m0, H0, H1, ŵ11,

ŵ1
0} and these are to be used for stabilizing six scalars fields.

To be specific, there are three saxions {D, σ, ρ} and three
axions {ξ0, ξ1, b1}. However, as we switch-off the F-term
geometric fluxes in order to satisfy the Bianchi identities, and
to avoid a possibly negative contribution to the scalar poten-
tial, we need to allow their presence only through the positive
semidefinite D-term effects. Subsequently we end up in hav-
ing the cohomology form of the Bianchi identities resulting
in just a single non-trivial constraint. This also reduces the
number of independent fluxes to five, which can be attributed
to the root cause of having one axionic combination still flat
in the end. So the observation that there is at least one axion
combination unfixed due to BIs, one cannot afford to make
any other fluxes to zero, in case some additional constraints
on the remaining fluxes arise in an explicit model through
the so-called missing Bianchi identities, which is unknown
for the moment. Similar observations have been made for the
type IIB models as well [110], which in the case of rigid com-
pactification has resulted in a (partial) restoration of the no-
scale structure even in the presence of non-geometric fluxes
[22]. To investigate the issue of missing Bianchi identities is
beyond the scope of the current plan as the main tasks and
goals in this work have been limited to follow a balanced
approach in the search of finding stable de-Sitter solutions
for integer fluxes, and if such a candidate model is found, then
to enumerate the possible loopholes for future refinements!

4 Summary and conclusions

In this work we have presented some simple and explicit
type IIA models for exploring the possibilities of realizing
tachyon-free (stable) AdS/dS solutions, and using the dic-
tionary of [21,105], the T -dual counterpart in type IIB set-
ting can be consistently realized. In our type IIA orientifold
model, we include the so-called geometric flux along with
the usual NS–NS three-form flux H3 and the RR p-form
fluxes Fp for p ∈ {0, 2, 4, 6}. First we have presented the
simple form of the four-dimensional type IIA scalar poten-
tial as given in Eqs. (2.2) which has been subsequently used
for exploring the possible scenario that could evade the well
known dS no-go theorems of a geometric type IIA setup. We
have engineered the flux choice such that:

• Given that the de Sitter no-go results of type IIA models
following from the volume/dilaton analysis can be evaded
by simultaneously including the Romans mass term and
geometric fluxes [2,5], we consider Romans mass term
m0 and (some of) the geometric flux to be always non-
zero. To be specific, we make only those geometric fluxes
non-zero which appears in the D-term effects and exploit
the F-term geometric fluxes to satisfy the Bianchi identi-
ties so that not to loose a positive semidefinite contribute
to the scalar potential.

• As said above, all the known NS–NS Bianchi identities
(of the cohomology formulation) are satisfied without
nullifying any of the D-term fluxes which could be useful
for uplifting purpose, given their positive semi-definite
nature.

• Some of the RR fluxes which couple to H3 flux and the
geometric flux in the tadpole relation are set to zero. To
be specific, these are the ones following from the two-
form potential (F2) and six-form potential (F6) denoted
as: ma = 0 and e0 = 0.

• There is one flux |e1| which does not receive an upper
bound from the tadpole relation as it can couple only to
non-geometric Q-flux (which we do not include in the
current analysis), and hence this flux |e1| can facilitate
the realization of large volume, large complex-structure
and weak string coupling VEVs for the AdS as well as
dS solutions we have.
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• There is one combination of axions which remains flat,
and it may be attributed to making too restrictive choice
of fluxes for various aforesaid reasons.

To summarise, we have presented a class of type IIA model
with stable AdS/dS solutions and have argued about their
viability under the so-called missing Bianchi identities [107,
111], which still remains an open issue to be explored, and
can lead to extra constraints which may or may not rule out
the de Sitter solutions we have found. However, settling the
issue of missing Bianchi identities is beyond the scope of the
current plan and we leave that for a future work.

Acknowledgements I would like to thank Fernando Marchesano,
David Prieto and Joan Quirant for useful discussions, and collaboration
at the initial stage of this project. In addition, I am thankful to Paolo
Creminelli, Atish Dabholkar and Fernando Quevedo for their support.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: The relevant
information about all the necessary data has been included within the
manuscript.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

Appendix A: Type IIA scalar potential with geometric
flux

In the absence of any non-geometric fluxes, the geometric
type IIA scalar potential can be encoded in a set of terms
given as below [22,105],

V ≡ VR + VNS + Vloc = (
V f6 + V f4 + V f2 + V f0

)

+ (Vh + Vω) + Vloc, (A.1)

where

V f6 = e4D

4V f2
0 , V f4 = e4D

4
fa G̃ab fb,

V f2 = e4D

4
fa G̃ab fb, V f0 = e4D

4
V (f0)2,

Vh = e2D

4V
[

h2
0

U + G̃i j hi0 h j0 + G̃λρhλ
0 hρ

0

]
,

Vω = e2D

4V
[

ta tb
(

ha hb
U + G̃i j hai hbj + G̃λρ ha

λ hb
ρ

)

+ 1

U
(
ha − kλ

2
ha

λ
) (V G̃ab − ta tb

)(
hb − kρ

2
hb

ρ
)

+ 1

U
(
U ĥα

0 + zλ ĥαλ

)
V (κ̂aαβ ta)−1

×
(
U ĥβ

0 + zρ ĥβρ

)]
,

Vloc = e3D

2
√U

[(
f0 h0 − fa ha

)
−

(
f0 hλ

0 − fa hλ
a

) kλ

2

]
.

(A.2)

where the various non-zero “axionic flux orbits” can be writ-
ten in the following form,

f0 = e0 + ba ea + 1

2
κabc ba bb mc + 1

6
κabc ba bb bc m0

− ξ0 (H0 + ba wa0) − ξ k (Hk + ba wak)

−ξλ (Hλ + ba wa
λ),

fa = ea + κabc bb mc + 1

2
κabc bb bc m0

−ξ0 wa0 − ξ k wak − ξλ wa
λ,

fa = ma + m0 ba,

f0 = m0,

h0 = (H0 + ba wa0) + zk (Hk + ba wak)

+1

2
k̂λmnzmzn (Hλ + ba wa

λ),

hk0 = (Hk + ba wak) + k̂λkn zn (Hλ + ba wa
λ), hλ

0

= (Hλ + ba wa
λ),

ha = wa0 + zk wak + 1

2
k̂λmnzmzn wa

λ,

hak = wak + k̂λkn zn wa
λ, ha

λ = wa
λ,

ĥαλ = ŵαλ + k̂λkm zm ŵα
k − 1

2
k̂λkmzkzmŵα

0,

ĥα
0 = ŵα

0.

(A.3)

This scalar potential can be studied for the searching the sta-
ble vacua through minimization of the moduli/axions, how-
ever one can consider the two-field volume/dilaton analysis
to rule out certain scenarios [2,5]. In a more general analysis,
one can also include the complex structure moduli in order
to further check the de-Sitter solutions allowed by the vol-
ume/dilaton analysis. Let us also note that the fluxes allowed
by the orientifold projection will be further constrained by
the following Bianchi identities,

Hλ ŵαλ = Hk̂ ŵα
k̂, wa

λ ŵαλ = wak̂ ŵα
k̂ (A.4)

We consider the type IIA setup with geometric flux such
that fluxes with k-indices are absent. This is equivalent to
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not having any odd-moduli Ga in the dual type IIB theory
[21,105].

For that purpose, we further introduce two new moduli,
namely ρ and σ via a redefinition in the overall volume (V)
of the Calabi Yau threefold and its mirror volume U by con-
sidering the two-cycle volume moduli ta and zi as

ta = ρ γ a, �⇒ V = ρ3, κabcγ
aγ bγ c = 6,

zλ = σ θλ, �⇒ U = σ 3, kργ δθ
ρθγ θδ = 6,

(A.5)

where γ a’s denote the angular Kähler moduli while θλ’s cor-
responds to the angular Kähler moduli on the mirror Calabi
Yau threefold. Now we can extract the volume factor ρ from
the Kähler moduli space metric and its inverse in the follow-
ing way,

G̃ab = κa κb − 4V κab

4V = ρ g̃ab,

G̃ab = 2 ta tb − 4V κab

4V = 1

ρ
g̃ab, (A.6)

G̃λρ = kλ kρ − 4U kλρ

4U = σ g̃λρ,

G̃λρ = 2 zλ zρ − 4U kλρ

4U = 1

σ
g̃λρ,

G̃ jk = − k̂ jk = σ g̃i j , G̃ jk = − k̂ jk = 1

σ
g̃i j .

Here the matrix g̃ab and its inverse g̃ab do not depend on
ρ modulus. Similarly, the matrices g̃λρ, g̃λρ, g̃i j and g̃i j do
not depend on the analogous complex structure modulus σ .
Using these new redefinitions the explicit dependence of the
ρ and σ moduli can be extracted out from the generic type
IIA scalar potential pieces given in Eq. (A.2) takes the form
given in Eq. (2.2), where Ai ’s are some functions of fluxes
and moduli other than volume modulus ρ, the complex struc-
ture modulus σ and the 4-dimensional dilaton D. For com-
pleteness, the explicit expressions of Ai ’s are given below,

A1 = 1

4
(f0)2, A2 = 1

4
fa g̃ab fb,

A3 = 1

4
fa g̃

ab fb, A4 = 1

4
f2
0 ,

A5 = 1

4
h2

0, A6 = 1

4
hi0 g̃

i j h j0, A7 = 1

4
hλ

0 g̃λρ hρ
0,

A8 = 1

4
ha g̃

ab hb,

A9 = 1

4

[(
γ a γ bg̃i j hai hbj

)
+ (θλ ĥαλ) (κ̂aαβ γ a)−1

×(θρ ĥβρ) − 1

2

(
g̃ab − γ aγ b) (

kλργ θρθγ ha
λ hb

+kλργ θλθγ ha hb
ρ
)]

,

A10 = 1

4

[(
γ a γ b g̃λρ ha

λ hb
ρ
)

+
(

ĥα
0

(θρ ĥβρ) + (θλ ĥαλ) ĥβ
0
)

(κ̂aαβ γ a)−1

+1

4

(
g̃ab − γ aγ b) (ha

λ) (hb
ρ) (kλργ θρθγ )

(kλργ θλθγ )

]
,

A11 = 1

4
(ĥα

0) (κ̂aαβ γ a)−1 (ĥβ
0),

A12 = 1

2

(
f0 h0 − fa ha

)
,

A13 = −1

4
(kλργ θρθγ )

(
f0 hλ

0 − fa hλ
a

)
.

(A.7)

This shows that all the Ai ’s except A9, A10, A12 and A13

are positive semi-definite.
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