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Abstract Using the well established principles of Lorentz
invariance, CP and CPT symmetry, and quantum statistics
we do a model-independent study of effects of possible non-
standard couplings of (Dirac and Majorana) neutrinos. The
study is sensitive to the different quantum statistical prop-
erties of the Dirac and Majorana neutrinos which, contrary
to neutrino-mediated processes of lepton number violation,
could lead to observable effects not suppressed by the small
ratios of neutrino and heavier particle masses. For processes
with a neutrino-antineutrino pair of the same flavor in the
final state, we formulate the “Dirac Majorana confusion the-
orem (DMCT)” showing why it is normally very difficult to
observe the different behaviour of both kinds of neutrinos
in experiments if they have only the standard model (SM)-
like left-handed vector couplings to gauge bosons. We dis-
cuss deviations from the confusion theorem in the presence
of non-standard neutrino interactions, allowing to discover
or constrain such novel couplings. We illustrate the general
results with two chosen examples of neutral current pro-
cesses, Z → ν ν and Pi → P f ν ν (with Pi, f denoting
pseudoscalar mesons, such as B, K , π ). Our analysis shows
that using 3-body decays the presence of non-standard inter-
actions can not only be constrained but one can also distin-
guish between Dirac and Majorana neutrino possibilities.

1 Introduction

Observations of neutrino oscillation [1,2] have established
the fact that neutrinos have non-zero but tiny masses and the
flavor neutrinos (ν� with � = e, μ, τ ), which only participate
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in the weak interactions, are linear combinations of mass
eigenstates (νi with i = 1, 2, 3 having masses mi ),

|ν�〉 =
∑

i

U∗
�i |νi 〉, (1)

where U denotes the unitary 3 × 3 lepton mixing matrix,
also called the PMNS matrix [3,4]. At present [5], we know
neither the values of the individual masses of the neutrinos
nor the mechanism that gives rise to these tiny masses (see
Refs. [6,7] for recent reviews of various neutrino mass mod-
els). In the Standard Model of particle physics (SM) neu-
trinos are massless and get produced via weak interaction
such that all neutrinos are left-handed and all antineutrinos
are right-handed. However, as the neutrinos are not mass-
less, handedness is not a good quantum number for neu-
trinos, i.e. in a frame moving faster than the neutrino (or
antineutrino) the handedness will be reversed. Nevertheless,
direct production of right-handed neutrinos and left-handed
antineutrinos has not yet been observed in any experiment,
consistent with the SM allowed V − A interactions. There-
fore, it is currently unknown whether the right-handed neu-
trinos have the same mass as the left-handed neutrinos or not.
Most certainly, detection of the right-handed neutrinos and
the left-handed antineutrinos would require invoking some
sort of new physics (NP) which we currently do not know. To
complicate the matter further, neutrinos being devoid of any
electric or colour charge are the only known fermions which
can possibly be their own antiparticles, i.e. they can be Majo-
rana fermions [8–10] unlike all the others which are Dirac
fermions.1 In most of the interesting mass models for neutri-

1 In contrast, massless neutrinos are described as Weyl fermions. The
reduction of neutrino degrees of freedom from 4 to 2 for massless neutri-
nos is a discrete jump. Thus massless neutrinos are completely different
from massive neutrinos even with an extremely tiny mass. In this work
the mass of neutrinos is always taken to be non-zero.
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nos, all of which involve different NP setups, the Majorana
nature is assumed. Like with many other aspects of neutrinos,
this is yet to be decisively decided by experiments.

Various methodologies that have been proposed to probe
the Majorana nature of neutrinos can be broadly grouped
into the following two categories, depending on the type of
process being considered.

1. Propagator probes or neutrino mediated probes: Well
known examples of such processes are neutrinoless
double-beta decay (0νββ) [11], neutrinoless double-
electron capture [12], neutrinoless muon (μ−) to positron
(e+) conversion [4,13], ν exchange force (ν Casimir
force) [14–21] or lepton number violating massive ster-
ile neutrino exchange [22], which involve one or more
neutrino(s) and/or antineutrino(s) as propagator(s). The
lepton number violating processes involve helicity flip
and are, therefore, always proportional to the unknown
mass of the propagating Majorana neutrino. In addition,
all the nuclear processes explored as propagator probes to
infer the nature of sub-eV active neutrinos suffer from
large theoretical uncertainty in the nuclear matrix ele-
ments. Although 0νββ searches have thus far not yielded
any signal [23], the experimental searches for it are going
on. Nevertheless, the associated issues mentioned above
underline the importance of alternative methods.

2. Initial / final state probes: These involve one (or more)
neutrino(s) and/or antineutrino(s) in the initial state or
the final state. Some previously explored processes under
this category are the neutrino-electron elastic scatter-
ing [24–27], neutrino-nucleon scattering [24], neutrino-
nuclei scattering [28], 2-body processes γ ∗ → ν ν [29]
that try to explore the electromagnetic properties of neu-
trinos [30], Z → ν ν [31], e+ e− → ν ν [32], 3-body
processes K+ → π+ ν ν [33], e+ e− → γ ν ν [34],
e γ → e ν ν [35], radiative emission of neutrino pair [36],
and 4-body B meson decay B0 → μ+ μ− νμ νμ [37].
In contrast with the propagator probes which essentially
directly test the Majorana mass term, the initial/final state
probes try to examine the quantum mechanical identical-
ness of Majorana neutrino and antineutrino via quantum
statistics.
Unlike the neutrino mass suppressed processes for prop-
agator probes, the initial/final state probes involve SM
allowed processes and therefore can be produced rela-
tively easily in experiments. The challenge in probing the
Dirac or Majorana nature of neutrinos using such probes is
to infer the momenta or energies of the missing neutrinos
which is always experimentally challenging.

The quantum statistics of Majorana neutrino and antineu-
trino stems from their quantum mechanical identical nature,
and it is an intrinsic property of the Majorana neutrino just

like its spin and charge. For a final state containing a pair of
Majorana neutrino and antineutrino of the same flavor, the
Fermi–Dirac statistics asserts that the corresponding tran-
sition amplitude is always anti-symmetrized with respect to
their exchange. This anti-symmetrization does not depend on
the size of the mass of neutrino (mν). Therefore, there is no
reason a priori to think that the difference between Dirac and
Majorana neutrinos via such initial/final state probes would
necessarily be dependent on mν , a result that apparently (but
not necessarily) contradicts the “practical Dirac Majorana
confusion theorem” (DMCT) [24,29]. A brief overview of
the literature, in this context, comparing two-body decays,
three-body decays as well as four-body decays is given in
Ref. [37].

The various initial/final state probes can, in general, be
related to one another via crossing symmetry [25]. For ease
of discussion and without loosing any generality we con-
centrate in this paper on providing a generalised framework
for final state probes, i.e. using processes in which a pair of
neutrino and antineutrino would appear in the final state. Fur-
thermore, we relax the helicity considerations, i.e. we do not
confine ourselves to left-handed neutrinos and right-handed
antineutrinos alone, since the involved interactions will take
care of the helicities by default. Unlike considering only SM
allowed interactions as done in Ref. [37] here we consider
NP effects in a model-independent manner and point out their
effects as well.

Before providing the layout of our paper, we would like
to emphasise that the active neutrinos and antineutrinos in all
the final states considered in this paper are invisible. In many
NP models it is possible to have other invisible particles such
as the heavy sterile neutrinos, dark matter particles or some
long-lived light particles (e.g. axion-like) that decays out-
side the detector volume. Therefore, observation of decays
into invisible states with rates modified comparing to the SM
predictions usually is not sufficient by itself to determine the
source of the modification, being it different types of neutri-
nos or entirely novel particles. The analysis we present in this
paper is limited by the assumptions that neutrinos are only
invisible final state but it is still useful for several reasons.

– If new invisible particles are massive (even relatively
light but with masses significantly exceeding neutrino
masses), they could have noticeable effects such as sig-
nificant reduction in phase space, or presence of some
resonance peaks corresponding to on-shell production of
the long-lived particles. Corresponding modifications of
visible final state particle spectra could help in distin-
guishing such cases from the neutrino production. Such
possibilities are well explored in the literature, see e.g.
[38] for a recent detailed review of invisible K meson
decays in various SM extensions such as the 2-body decay
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K → π X inv where the invisible particle X inv could be a
Higgs mixed scalar, dark photon, or axion-like particle.

– Current experiments are in general in agreement with the
SM predictions, therefore the bounds on non-standard
neutrino couplings which we discuss in the paper come
from comparing their effects with the size of experimen-
tal errors of relevant observables. If there are more invis-
ible states in a given NP model, even very light ones,
barring fine tuning they compete with neutrino interac-
tions in saturating the errors, tightening the bounds. Thus
the limits on NP neutrino couplings which we discuss can
be considered as (again barring fine tuning and potential
cancellations) being on the conservative side.

– Finally, in many SM extensions neutrinos remain the only
ultra-light and weakly interacting (thus “invisible”) par-
ticles. In such cases methodology proposed in the paper
can be directly used to constrain NP neutrino couplings
for a chosen BSM model.

Our paper is organised as follows. Following Introduction,
in Sect. 2 we present a model-independent general formal-
ism for processes involving a neutrino and antineutrino pair
of the same flavor in the final state and we provide a gener-
alised statement of DMCT in context of these processes. In
Sect. 3 we discuss how the effects of quantum statistics and
symmetry properties of transition amplitudes can be utilised
to probe NP interactions in neutrino sector and potentially
lead to substantial difference between Dirac and Majorana
neutrinos. In the following Sect. 4 we illustrate the general
results with two suitably chosen two-body and three-body
neutral current decays, showing how the bounds on the NP
couplings depend on the assumed neutrino nature. The possi-
bility of distinguishing the Dirac and Majorana neutrinos by
measuring the visible particles energy spectrum in the three-
body decays is discussed in Sect. 5. Finally we conclude in
Sect. 6 highlighting the various salient aspects of our study.

2 Model-independent formalism for processes
containing ν ν in the final state

2.1 Choice of process

Let us consider a general process with a neutrino and an
antineutrino of the same flavor in the final state, say

X (pX ) → Y (pY ) ν(p1) ν(p2),

where X,Y can be single or multi-particle states, Y can also
be null, the contents of X and Y (if it exists) can only be any
visible particle and the 4-momenta pX , pY are assumed to
be well measured so that one can unambiguously infer the
total missing 4-momentum of ν ν, pmiss = p1 + p2. So the
4-momentum of X must either be fixed by design of the exper-

iment (e.g. X might be a particle produced at rest in the lab-
oratory or be the constituent of a collimated beam of known
energy or it could consist of two colliding particles of known
4-momenta) or the 4-momentum of X be inferred from the
fully-tagged partner particle with which it is pair-produced.
The final state Y should not contain any additional neutrinos
or antineutrinos. The process could be a decay or scattering
depending on whether X is a single particle state or two par-
ticle state. Some actual processes that satisfy such criteria
are e+ e− → ν ν, Z → ν ν, e+ e− → γ ν ν, K → π ν ν,
B → K ν ν, B0 → μ+ μ− νμ νμ, J/ψ → μ+ μ− νμ νμ,
H → τ+ τ− ντ ντ etc.

Schematically the process X → Y ν ν is drawn in
Fig. 1. Since Majorana neutrino and antineutrino are quan-
tum mechanically identical, there is an additional diagram
with exchanged 4-momenta p1 ↔ p2 in the Majorana case as
shown in Fig. 1. The effect of this exchange diagram in Majo-
rana case can, in many instances but not always, be absorbed
into a single diagram like the one for the Dirac case but with
a different effective vertex. In Sect. 4 we shall encounter a
few examples where the effective vertex for Majorana case
is different from Dirac case. An example process where we
can not absorb the direct and exchange diagram contribu-
tions to the effective vertex factor is B0 → μ+ μ− νμ νμ as
discussed in Ref. [37].

Additionally, it should be noted that in this work we
assume that in any of the processes under our consideration,
the effect of measurements should not destroy the identical
nature of Majorana neutrino and antineutrino. This is akin to
putting the constrain that in a double-slit experiment meant
to observe the interference of light, no measurement should
identify through which slit the photon has passed.

2.2 Origin of observable difference between Dirac and
Majorana neutrinos

The transition amplitude is, in general, dependent on all the
4-momenta of participating particles. For brevity of expres-
sion and without loss of generality, we denote the transition
amplitude by only mentioning the p1, p2 dependence. For
Dirac neutrinos, the transition amplitude can be written as,

M D = M (p1, p2), (2)

while for Majorana case the amplitude is anti-symmetrized
with respect to the exchange of the Majorana neutrino
and antineutrino which are quantum mechanically identical
fermions,

M M = 1√
2

(
M (p1, p2)︸ ︷︷ ︸

Direct amplitude

− M (p2, p1)︸ ︷︷ ︸
Exchange amplitude

)
, (3)

where 1/
√

2 takes care of the symmetry factor. Note that the
amplitudes of Eqs. (2) and (3) do not necessarily assume SM
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Fig. 1 A cartoon (pseudo-Feynman diagrams) for the processes X →
Y ν ν, with both Dirac and Majorana neutrino possibilities. The blob
in these diagrams represents the effective vertex and it includes both
SM and NP contributions. Although Majorana antineutrino is indistin-
guishable from Majorana neutrino, we keep using the notation of ν for
antineutrino and ν for neutrino simply as a book-keeping device

interactions, they can involve NP effects as well, and hence
they include the most general structures of the amplitude that
are allowed by Lorentz invariance. A general analysis that
specifically exploits the symmetry properties of the ampli-
tude in context of generic NP possibilities is given in Sect. 3.

The difference between Dirac and Majorana cases that can
possibly be probed is obtained after squaring the amplitudes
and taking their difference, which is given by,

∣∣∣M D
∣∣∣
2 −

∣∣∣M M
∣∣∣
2 = 1

2

(
|M (p1, p2)|2︸ ︷︷ ︸

Direct term

− |M (p2, p1)|2︸ ︷︷ ︸
Exchange term

)

+ Re
(
M (p1, p2)

∗ M (p2, p1)
)

︸ ︷︷ ︸
Interference term

. (4)

From Eq. (4) it is easy to conclude that there are essentially
two sources of difference between Dirac and Majorana cases,

1. unequal contributions from “Direct term” and “Exchange
term”, i.e.

|M (p1, p2)|2︸ ︷︷ ︸
Direct term

�= |M (p2, p1)|2︸ ︷︷ ︸
Exchange term

, (5)

2. non-zero contribution from the “Interference term”, i.e.

Re
(
M (p1, p2)

∗ M (p2, p1)
)

︸ ︷︷ ︸
Interference term

�= 0. (6)

However, note that in the case when no individual informa-
tion about ν ν are either known or deducible, the only differ-
ence between Dirac and Majorana cases that can be experi-
mentally accessed is obtained after full integration over p1

and p2 which gives,

∫∫ (∣∣∣M D
∣∣∣
2 −

∣∣∣M M
∣∣∣
2
)

d4 p1 d4 p2

=
∫∫

Re
(
M (p1, p2)

∗ M (p2, p1)
)

︸ ︷︷ ︸
Interference term

d4 p1 d4 p2, (7)

where we have used the fact that although, in general, the
“Direct” and “Exchange” terms may differ, when we fully
integrate over the 4-momenta of neutrino and antineutrino
we do get

∫∫
|M (p1, p2)|2︸ ︷︷ ︸

Direct term

d4 p1 d4 p2 =
∫∫

|M (p2, p1)|2︸ ︷︷ ︸
Exchange term

d4 p1 d4 p2,

(8)

as p1 and p2 act as dummy variables in this case.

2.3 “Dirac–Majorana Confusion Theorem” for the neutrino
interactions in the SM

In most of the experimental scenarios, especially true for pro-
cesses of the form X → Y ν ν, information about individual
neutrino momenta is not available. In such a case the differ-
ence between the Dirac and the Majorana neutrinos is given
only by the integrated interference term in Eq. (7). If we
further consider only SM interactions without any NP con-
tributions, then the V − A interaction of SM would always
produce left-handed neutrino and right-handed antineutrino,
even if the mass of the neutrino and antineutrino is considered
to be non-zero. In such a case the evaluation of the squared
Feynman diagram for the “Interference term” would, in gen-
eral, necessarily involve two helicity flips which would make
it proportional to m2

ν , i.e.

Re
(
M SM(p1, p2)

∗ M SM(p2, p1)
)

︸ ︷︷ ︸
Interference term in the SM

∝ m2
ν .

Thus, if only SM interactions are considered and one fully
integrates over the neutrino and antineutrino 4-momenta,
the difference between Dirac and Majorana cases would be
proportional to m2

ν . This can be considered as a generalised
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statement of the “practical Dirac Majorana confusion theo-
rem” (DMCT).

The above statement still holds taking into account that in
many cases experiments can measure the total 4-momentum
of the neutrino and antineutrino pair in the final state, p1+ p2,
equal to the difference between initial and final 4-momenta
of the visible particles. The knowledge of p1 + p2 only (not
p1 and p2 individually), gives access to that part of the full
phase space for the neutrino pair which is obviously symmet-
ric under the exchange p1 ↔ p2. Thus argument about sym-
metric integration and corresponding cancellation between
“Direct” and “Exchange” terms in Eq. (8) still holds, even
if the phase space integral is not done over the full range
of p1, p2. In such a scenario, all the cross sections or decay
rate distributions expressed in terms of parameters related to
the 4-momenta of visible particles will always be identical if
pure SM interactions are assumed (up to the neutrino mass
suppressed effects). However, as we will show in the follow-
ing sections, the distributions of visible particles may differ
if one also allows non-standard neutrino interactions.

The remaining possibility of experimental observation of
the difference between the Dirac and Majorana neutrinos in
the SM is to reconstruct or at least constrain the neutrino 4-
momenta or some of their components such as the energies,
so that full integration over the neutrino and antineutrino 4-
momenta is not necessary and one can directly use Eq. (4),
without worrying about the cancellation in Eq. (8). This, in
general, is difficult as neutrinos are invisible in detectors and
their 4-momenta can be only inferred from the kinematics of
visible particles. Still, it may be possible for some particular
configuration(s) of them, however occurring only for a small
fraction of all kinematically allowed final states.

Relevant example of such “special” kinematic scenario
has been proposed in Ref. [37], where authors consider the
4-body decay of the form X → y1 y2 ν ν with y1 and y2 fly-
ing away back-to-back with equal magnitudes of 3-momenta
in the rest frame of X . In such case, the ν and ν also fly away
back-to-back with equal energies Eν = (mX −Ey1 −Ey2)/2,
where Ey1 , Ey2 denote the energies of y1 and y2 respectively
and mX is the mass of parent particle X . This is discussed in
detail in Ref. [37] taking the example of B0 → μ− μ+ νμ νμ.
As the authors point out, other meson decays such as those
of neutral K , or D, or J/ψ , or Υ (nS) decays as well as
Higgs decays might also be useful for such studies. The dif-
ference between Dirac and Majorana cases does not neces-
sarily depend on the size of the neutrino mass, and hence
might be feasible to discover in future experiments.

3 New physics scenarios and practical DMCT

There is no reason a priori for the “practical DMCT” to hold,
if NP contributions in the neutrino interactions are allowed, as

in this case Eq. (4) “Direct” and “Exchange” terms in general
do not need to cancel each other. To illustrate it more clearly
using symmetry properties of the transition amplitude, let us
assume that some (yet unknown) NP at high energy modifies
the low energy effective neutrino interactions we want to
explore in processes of the form X → Y ν ν, and the SM
singlet right-handed neutrinos and left-handed antineutrinos
might as well participate in such interactions.

3.1 DMCT from the perspective of exchange symmetry

Although process specific analysis using exchange symme-
try is found in the literature, a process-independent general
analysis highlighting the difference between Dirac and Majo-
rana neutrinos would be useful in context of NP interactions.
Below we provide such an analysis.

The amplitude for X (pX ) → Y (pY ) ν(p1) ν(p2) for
Majorana neutrinos must be still anti-symmetric with respect
to the 4-momentum exchange p1 ↔ p2, as was noted in
Eq. (3). The Dirac amplitude of Eq. (2) could, in principle,
be split into two parts, one symmetric and the other anti-
symmetric under the exchange p1 ↔ p2, i.e.

M D = M (p1, p2) = Msymm(p1, p2) + Manti-symm(p1, p2),

(9)

where by definition we have

Msymm(p1, p2) = 1

2

(
M (p1, p2) + M (p2, p1)

)

= Msymm(p2, p1), (10a)

Manti-symm(p1, p2) = 1

2

(
M (p1, p2) − M (p2, p1)

)

= −Manti-symm(p2, p1), (10b)

so that the Majorana amplitude of Eq. (3) is automatically
given by,

M M = √
2Manti-symm(p1, p2). (11)

With the decomposition of amplitudes as shown in Eqs. (9)
and (11), the difference between Dirac and Majorana neutri-
nos is given by,

∣∣∣M D
∣∣∣
2 −

∣∣∣M M
∣∣∣
2 = ∣∣Msymm(p1, p2) + Manti-symm(p1, p2)

∣∣2

− 2
∣∣Manti-symm(p1, p2)

∣∣2
,

= ∣∣Msymm(p1, p2)
∣∣2 − ∣∣Manti-symm(p1, p2)

∣∣2

+ 2 Re
(
Msymm(p1, p2)

∗ Manti-symm(p1, p2)
)

.

(12)

If one were to do full integration over the neutrino and
antineutrino 4-momenta, the interference term in Eq. (12)
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vanishes as it is anti-symmetric under the p1 ↔ p2 exchange
and one is left with

∫∫ (∣∣∣M D
∣∣∣
2 −

∣∣∣M M
∣∣∣
2
)

d4 p1 d4 p2

=
∫∫ (∣∣Msymm(p1, p2)

∣∣2 − ∣∣Manti-symm(p1, p2)
∣∣2

)
d4 p1 d4 p2,

(13)

which does not necessarily vanish in presence of NP inter-
actions. Note that Eqs. (7) and (13) are equivalent to one
another, but Eq. (13) highlights the symmetry properties that
were not explicitly evident in Eq. (7).

3.2 Processes with ν ν produced via neutral current
interactions

As an example, let us consider NP effects on neutrino-
antineutrino neutral current interactions. In such a case, the
amplitude would have the generic form,

M (p1, p2) =
∑

i

Si
[
u(p1) Γi v(p2)

]
,

where Si denotes the parts of the amplitude which do
not depend on p1 and p2 or contain algebraic expressions
such as (p1 + p2)

2 which are symmetric under p1 ↔ p2

exchange, and Γi could be 1, γ 5, γ α , γ α γ 5, σαβ or σαβ γ 5,
which respectively correspond to scalar, pseudo-scalar, vec-
tor, axial-vector, tensor and axial-tensor interactions. For
Majorana neutrinos it is well known that u(p1) Γ v(p2) =
− u(p2)C Γ T C−1 v(p1) [39] where C denotes the charge
conjugation operator. Using this it is easy to show that
Msymm(p1, p2) gets contributions only from vector, ten-
sor and axial-tensor interactions while Manti-symm(p1, p2)

gets contributions from scalar, pseudo-scalar and axial-vector
interactions alone, i.e.

M (p1, p2) =
∑

i

Si
[
u(p1) Γi v(p2)

]

=
{
Msymm(p1, p2) for Γi = γ α, σαβ, σαβ γ 5,

Manti-symm(p1, p2) for Γi = 1, γ 5, γ α γ 5.

Therefore, the NP effects could lead to observable differ-
ences between the Dirac and Majorana neutrino interactions,
even after integrating over the unknown neutrino and antineu-
trino 4-momenta, if the symmetric and anti-symmetric parts
of the amplitude do not cancel either due to some imposed
symmetry (like in the case of vector V − A interactions in
the SM) or due to some accidental fine-tuning and numerical
cancellation between different types of couplings. In Sect. 4
we illustrate the general considerations presented above dis-
cussing a chosen physical process of the form X → Y ν ν.

4 Example 2-body and 3-body neutral current decays
with ν ν in the final state

To illustrate the results arising from the general formalism
presented in previous sections, we study here in detail two
example processes, in both cases assuming the non-vanishing
NP effects, namely the 2-body decay of Z0 boson, Z → ν� ν�

and the 3-body decay of an initial pseudo-scalar meson
to a final pseudo-scalar meson and ν ν. A recent model-
independent analysis of 3-body leptonic decays, but in con-
text of heavy sterile neutrinos and facilitated by charged cur-
rent interaction, can be found in Ref. [40].

4.1 2-Body decay of Z → ν� ν�

Considering Lorentz invariance alone, it is possible to write
down the most general Z(p) → ν(p1) ν(p2) decay ampli-
tude as follows (for Dirac neutrinos),

M D = −i εα(p) u(p1)
[(

g+
S + g+

P γ 5
)
pα +

(
g−
S + g−

P γ 5
)
qα

+ γ α
(
gV + gA γ 5

)
+ σαβ

(
g+
Tmd

+ g+
Ted

γ 5
)
pβ

+ σαβ
(
g−
Tmd

+ g−
Ted

γ 5
)
qβ

]
v(p2), (14)

where εα(p) denotes the polarisation 4-vector of Z , q =
p1 − p2, p = p1 + p2, g(±)

X with X = S, P, V, A, Tmd, Ted

denote the various possible coupling constants correspond-
ing to scalar, pseudo-scalar, vector, axial-vector, tensor (mag-
netic dipole) and axial-tensor (electric dipole) kind of inter-
actions. In the SM, g±

S = g±
P = g±

Tmd
= g±

Ted
= 0 and

gV = −gA = gZ
4

where gZ = e/(sin θW cos θW ) with θW

being the weak mixing angle and e being the electric charge
of positron. In presence of NP all the above coupling con-
stants could, in principle, differ from the SM values. Noting
that all terms proportional to pα vanish since pα εα(p) = 0,
and utilising Gordon identities as well as neglecting terms
proportional to mν , the tensorial components get eliminated
to yield,

M D = −i εα(p) u(p1)
[(

gS + gP γ 5
)
qα

+γ α
(
gV + gA γ 5

)]
v(p2), (15)

where gS = g−
S + i g+

Tmd
and gP = g−

P + i g+
Ted

. Further, if we
consider CP and CPT conservation in the decay Z → ν� ν�,
gS = 0 and gP = 0 ought to be satisfied respectively. This
implies, only vector and axial-vector couplings are allowed.
The most general expression for the decay amplitude for
Z → ν� ν� with Dirac neutrinos is given by,

M D = M (p1, p2)

= − i gZ
2

εα(p)
[
u(p1) γ α

(
C�
V − C�

A γ 5
)

v(p2)
]
, (16)
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where, to keep our analysis more general, we have elevated
the parameters gV and gA to possibly be different for every
the lepton family by adding the superscript � = e, μ, τ such
that the vector and axial-vector couplings are expressed as

g�
V = gZ

2
C�
V and g�

A = −gZ
2
C�

A respectively, with

C�
V,A = 1

2
+ ε�

V,A, (17)

where ε�
V , ε�

A parameterise the NP effects, vanishing in the
SM case. The amplitude for Majorana case is given by

M M = 1√
2

(
M (p1, p2) − M (p2, p1)

)

= i gZ C�
A√

2
εα(p)

[
u(p1) γ α γ 5 v(p2)

]
. (18)

It is clear that we can combine the direct and exchange ampli-
tudes in this case and effectively redefine the vertex structure
for Z → ν� ν� when Majorana neutrinos are considered.

Keeping neutrino mass dependent terms in the amplitude
squares, we get different results for Dirac and Majorana neu-
trinos:

∣∣∣M D
∣∣∣
2 = g2

Z

3

( (
(C�

V )2 + (C�
A)2

) (
m2

Z − m2
ν

)

+ 3
(
(C�

V )2 − (C�
A)2

)
m2

ν

)
, (19)

∣∣∣M M
∣∣∣
2 = 2 g2

Z (C�
A)2

3

(
m2

Z − 4m2
ν

)
, (20)

such that

∣∣∣M D
∣∣∣
2 −

∣∣∣M M
∣∣∣
2 = g2

Z

3

( (
(C�

V )2 − (C�
A)2

) (
m2

Z + 2m2
ν

)

+ 6 (C�
A)2 m2

ν

)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g2
Z

2
m2

ν,
(

for SM alone
)

g2
Z

3

(
ε�
V − ε�

A

)
m2

Z ,

(
with NP but

neglecting mν

)

(21)

where we have kept only the leading order contributions of
ε�
V,A while considering NP effects. It is clear that the SM

result is fully in agreement with “practical Dirac Majorana
confusion theorem”. However, the difference between Dirac
and Majorana neutrinos appears in context of NP contribu-
tions even when one neglects mν dependent terms (unless,
of course, ε�

V = ε�
A in which case the additional NP contri-

butions effectively rescale the SM allowed V − A coupling).
Possible example of NP effects in this Z boson decay could
arise from kinetic mixing of Z with the neutral gauge bosons

from extra gauge groups like additional U (1) or SU (2)R . In
this paper we are not concerned with any specific model of
NP to keep our results very general.

The decay width of Z boson into invisible final states is
well measured and can constrain NP contributions to neutrino
couplings. Neglecting small neutrino masses, the decay rates
for Z → ν� ν� for Dirac and Majorana neutrino possibilities
are given by

Γ D(Z → ν� ν�) = Γ 0
Z

(
1 + 2 ε�

V + 2 ε�
A

)
, (22a)

Γ M (Z → ν� ν�) = Γ 0
Z

(
1 + 4 ε�

A

)
, (22b)

where Γ 0
Z denotes the SM decay rate for mν = 0,

Γ 0
Z = GF m3

Z

12
√

2 π
, (23)

with GF being the Fermi constant. Thus, in presence of NP
effects and neglectingmν dependent terms, the total invisible
width of Z boson is given by,

ΓZ ,inv =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Γ 0
Z

(
3 + 2

∑

�=e,μ,τ

(
ε�
V + ε�

A

) )
,

(
for Dirac

neutrinos

)

Γ 0
Z

(
3 + 4

∑

�=e,μ,τ

ε�
A

)
.

(
for Majorana

neutrinos

)

(24)

The ratio ΓZ ,inv/Γ
0
Z is a measure of the number of light neu-

trino species Nν and its experimental estimate is [5,41],

Nν = ΓZ ,inv/Γ
0
Z = 2.9963 ± 0.0074. (25)

Using Eq. (24) in Eq. (25) we get the following constraints
on the NP parameters,

∑

�=e,μ,τ

(
ε�
V + ε�

A

)
= −0.0018 ± 0.0037,

(
for Dirac
neutrinos

)

(26a)
∑

�=e,μ,τ

ε�
A = −0.0009 ± 0.0018,

(
for Majorana

neutrinos

)
(26b)

which are perfectly consistent with zero, however obviously
different for Majorana and Dirac neutrinos. In the latter case,
it is in principle even possible that deviations from the SM
V − A-type couplings are individually larger but cancel
between the vector and axial contributions.

Assuming that the NP contributions do not depend on the
flavor of the neutrino, i.e. εeV,A = ε

μ
V,A = ετ

V,A ≡ εV,A (say),

and keeping the contributions from ε2
V,A terms as well, we

find that εV and εA get constrained by Eq. (25) as shown in
Fig. 2. It is clear from Fig. 2 that the SM values εV = 0 = εA
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Fig. 2 Constraints on the NP
parameters εV and εA from the
experimentally measured
number of light neutrino species
Nν . The point denoted by ‘+’
corresponds to the SM values
εV = 0 = εA. In the plots here
ε2
V,A contributions have not

been neglected

(corresponding to the point indicated by ‘+’) are within the
allowed 1σ region.

The results above can be interpreted in two-fold way.
First, one can assume some specific NP model that affects
the weak neutral current processes involving neutrinos, with
well defined Lagrangian and field interactions. In this case
nature of the neutrinos follows from the model construction.
As always, to predict the phenomenological consequences
of the given SM extension, one needs first to estimate the
experimentally allowed size of NP couplings. An example
above illustrates how such bounds differ for a particular decay
depending on the type of neutrinos in a model. Obviously, the
realistic NP models usually contain a number of new param-
eters and constraining them requires combining bounds from
various measurements, often not only from the neutrino sec-
tor. The invisible Z boson decay discussed in this section, as
a quantity known to a good accuracy, should always be one of
observables contributing to such more general analysis and
fitting NP model to data.

Second, it may be not known in advance what is the nature
of the neutrino fields, apart from the assumption that they can
have interactions going beyond the SM-like V −A couplings.
In this case single measurement like the invisible Z boson
decay cannot help distinguish the type of neutrino fields if
some deviations from the SM predictions are observed (or
even if neutrinos are responsible for such deviations). How-
ever, again when more measurements are combined (espe-
cially for the final states with more than 2 particles, which
allow to construct additional observables like shown in the
next section) it may be possible to constrain individual cou-
plings and, in an optimistic scenario, understand the nature
of “invisible” sector of the theory. Again, reconstructing
the model couplings must take into account the fact that it
depends on the nature of neutrino fields.

Finally, apart from specific decay discussed in this sec-
tion, the general formalism presented before can be applied
to other 2-body neutrino decays which can be considered in

searches for various channels of decays of BSM particles,
e.g. new neutral heavy gauge bosons or scalars (here possi-
ble example are the sneutrino decays in R-parity violating
MSSM).

4.2 3-Body decay of an initial pseudo-scalar meson to a
final pseudo-scalar meson and ν ν

As a second example let us consider the general decay Pi →
P f ν� ν� where Pi is the parent pseudo-scalar meson with
mass Mi and P f is the daughter pseudo-scalar meson with
mass M f . For example, Pi could be B or K meson, then P f

would be either K or π meson respectively.
Considering Lorentz invariance, the effective Lagrangian

for Pi → P f ν� ν� decay can be written as follows,

L = J �
SL

(
ψν PL ψν

)
+ J �

SR

(
ψν PR ψν

)

+
(
J �
V L

)

α

(
ψν γ αPL ψν

)
+

(
J �
V R

)

α

(
ψν γ α PR ψν

)

+
(
J �
T L

)

αβ

(
ψν PL σαβ ψν

)

+
(
J �
T R

)

αβ

(
ψν σαβ PR ψν

)
+ h.c., (27)

where ψ j denotes the fermionic field of j = ν�, ν� and
J �
SL , J �

SR ,
(
J �
V L

)
α

,
(
J �
V R

)
α

,
(
J �
T L

)
αβ

(
J �
T R

)
αβ

denote the
different hadronic currents describing the quark level tran-
sitions from Pi to P f meson. We have used the superscript
� to accommodate any possible differences in the effective
Lagrangian when different neutrino flavors are considered.
The subscripts S, V and T in the hadronic currents denote the
fact that the associated external leptonic currents are scalar,
vector and tensor type, respectively, and in addition they carry
also the chirality index. In the SM, at tree-level, only the
V − A interaction is present, while the scalar and tensor
interactions involving left-handed neutrinos might be gener-
ated from quantum loops and are hence expected to be sup-
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pressed. Additionally, in the SM the right-handed neutrinos
do not take part in any interaction. In this analysis we do not
consider any specific NP model to keep our results general,
thus in Eq. (27) we have included all possible interactions
disregarding the helicity of neutrino.

The decay amplitude forPi (pi ) → P f (p f ) ν�(p1) ν�(p2),
considering the neutrino and the antineutrino to be Dirac
fermions, is given by,

M D = M (p1, p2) = u(p1)
[
F�
SL PL + F�

SR PR

+
(
F�+
V L pα + F�−

V Lqα

)
γ α PL

+
(
F�+
V R pα + F�−

V Rqα

)
γ α PR

+ F�
T L pα qβ σαβ PL

+ F�
T R pα qβ σαβ PR

]
v(p2), (28)

where p = pi + p f , q = pi − p f = p1 + p2 and the various
form factors F�

SX , F�±
V X , F�

T X are defined as follows,

〈
P f

∣∣∣J �
SX

∣∣∣Pi

〉
= F�

SX , (29a)
〈
P f

∣∣∣
(
J �
V X

)

α

∣∣∣Pi

〉
= F�+

V X pα + F�−
V X qα, (29b)

〈
P f

∣∣∣
(
J �
T X

)

αβ

∣∣∣Pi

〉
= F�

T X pα qβ, (29c)

where by X we denote the chirality index, X = L , R.
The form factors defined in Eq. (29) are complex and, in

general, functions of the square of the momentum transferred,
i.e. q2 ≡ s. Here the form factors also include the CKM
matrix elements and their mass dimensions are different since
the explicit dependencies on quark/meson masses are hidden
for simplicity of expressions.

The decay amplitude for Majorana neutrinos is obtained
by anti-symmetrization with respect to exchange of p1 and
p2 and is given by,

M M = 1√
2

(
M (p1, p2) − M (p2, p1)

)

= √
2 u(p1)

[
F�
SL PL + F�

SR PR

+
(
F�+
V R − F�+

V L

2
pα + F�−

V R − F�−
V L

2
qα

)
γ α γ 5

]
v(p2).

(30)

Once again we find that the direct and exchange amplitudes
in this case can be combined to effectively redefine the vertex
factors for each possible interaction. Notably, for Majorana
neutrinos no vector or tensor neutral currents are possible.

Since the scalar products that appear in the amplitude
squares are Lorentz invariant, they can be evaluated in any

Fig. 3 Kinematic configuration of the decay Pi → P f ν ν in center-
of-momentum frame of the ν ν pair

chosen frame of reference. It is well known that any 3-body
decay can be fully described by two independent parameters.
For simplicity we choose them as s = (

p1 + p2
)2 and the

angle θ between the 3-momenta of the neutrino and the final
state meson in the center-of-momentum frame of the ν ν pair,
as shown in Fig. 3.

The amplitude squares for both Dirac and Majorana cases
can be written in the following form in terms of the variables
s and cos θ ,
∣∣∣M D/M

∣∣∣
2 = CD/M

0 + CD/M
1 cos θ + CD/M

2 cos2 θ, (31)

where, neglecting the small terms proportional to neutrino
mass mν we have,

CD
0 = s

( ∣∣∣F�
SL

∣∣∣
2 +

∣∣∣F�
SR

∣∣∣
2 )

+ λ
( ∣∣∣F�+

V L

∣∣∣
2 +

∣∣∣F�+
V R

∣∣∣
2 )

,

(32a)

CD
1 = 2 s

√
λ

(
Im

(
F�
SL F

�∗
T L

)
+ Im

(
F�
SR F

�∗
T R

))
, (32b)

CD
2 = −λ

( ∣∣∣F�+
V L

∣∣∣
2 +

∣∣∣F�+
V R

∣∣∣
2 − s

(∣∣∣F�
T L

∣∣∣
2 +

∣∣∣F�
T R

∣∣∣
2
))

,

(32c)

CM
0 = 2 s

( ∣∣∣F�
SL

∣∣∣
2 +

∣∣∣F�
SR

∣∣∣
2 )

+ λ

∣∣∣F�+
V L − F�+

V R

∣∣∣
2
, (32d)

CM
1 = 0, (32e)

CM
2 = −λ

∣∣∣F�+
V L − F�+

V R

∣∣∣
2
, (32f)

with

λ = M4
i + M4

f + s2 − 2
(
M2

i M2
f + s M2

i + s M2
f

)
. (33)

The Dirac amplitude square may contain a term odd in cos θ ,
while it is always absent in Majorana case. This, in principle,
could be probed if the angle θ could be measured experimen-
tally. However, at present the angle θ can not be observed as
both the neutrino and antineutrino remain undetected in the
detector near their point of production. In addition, such a
term also requires simultaneously existence of both tensor
and scalar NP interactions (in addition, with complex cou-
plings) and is likely to be small.
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The differential decay rate in the rest frame of the parent
meson Pi after integration over the unobservable cos θ is
given by,

dΓ D/M

ds
= 1

(2 π)3

b

16 M3
i

(
CD/M

0 + 1

3
CD/M

2

)
, (34)

where

b =
√

λ

2

√

1 − 4m2
ν

s
. (35)

In terms of the form factors, we get

dΓ D

ds
= 1

(2 π)3

λ b

24 M3
i

( ∣∣∣F�+
V L

∣∣∣
2 +

∣∣∣F�+
V R

∣∣∣
2

+ 3s

2λ

(∣∣∣F�
SL

∣∣∣
2 +

∣∣∣F�
SR

∣∣∣
2
)

+ s

2

(∣∣∣F�
T L

∣∣∣
2 +

∣∣∣F�
T R

∣∣∣
2
) )

, (36a)

dΓ M

ds
= 1

(2 π)3

λ b

24 M3
i

( ∣∣∣F�+
V L − F�+

V R

∣∣∣
2 + 3s

λ

(∣∣∣F�
SL

∣∣∣
2 +

∣∣∣F�
SR

∣∣∣
2
) )

.

(36b)

From Eqs. (36a) and (36b) it is clear that the presence of
additional forms of NP interactions on top of the usual SM
allowed V − A interaction can lead to observable differences
between the Dirac and Majorana neutrinos.

To show the impact of presence of such additional
non-standard interactions we consider a simple effective
parametrization of NP effects (using again the chirality index
X = L , R),

F�
SX = Mi FSM ε�

SX , (37a)

F�+
V L = FSM

(
1 + ε�

V L

)
, (37b)

F�+
V R = FSM ε�

V R, (37c)

F�
T X = 1

Mi
FSM ε�

T X , (37d)

where ε�
QX , Q = S, V, T , denote the relative size of the NP

contributions with respect to the SM contribution2 and are

assumed to be small,
∣∣∣ε�

QX

∣∣∣ 
 1. We include Mi factors in

Eq. (37) to accommodate for the difference in mass dimen-
sions of various form factors so as to keep the NP parame-
ters ε�

QX dimensionless. Substituting Eq. (37) in Eq. (36) we
obtain,

dΓ D

ds
= dΓ SM

ds

(
1 + 2 Re ε�

V L +
∣∣∣ε�

V L

∣∣∣
2 +

∣∣∣ε�
V R

∣∣∣
2

+ 3sM2
i

2λ

(∣∣∣ε�
SL

∣∣∣
2 +

∣∣∣ε�
SR

∣∣∣
2
)

2 Note that ε�
QX are in general different quantities than ε�

V , ε�
A defined

in Sect. 4.1.

+ s

2M2
i

(∣∣∣ε�
T L

∣∣∣
2 +

∣∣∣ε�
T R

∣∣∣
2
) )

≈ dΓ SM

ds

(
1 + 2 Re ε�

V L

)
, (38a)

dΓ M

ds
= dΓ SM

ds

(
1 + 2 Re ε�

V L − 2 Re ε�
V R +

∣∣∣ε�
V L − ε�

V R

∣∣∣
2

+ 3sM2
i

λ

(∣∣∣ε�
SL

∣∣∣
2 +

∣∣∣ε�
SR

∣∣∣
2
) )

≈ dΓ SM

ds

(
1 + 2 Re ε�

V L − 2 Re ε�
V R

)
, (38b)

where we defined the SM decay rate as

dΓ SM

ds
= 1

(2 π)3

λ b |FSM|2
24 M3

i

. (39)

Therefore, the difference between Dirac and Majorana cases,
to the leading order in the NP parameters, is given by,

dΓ D

ds
− dΓ M

ds
≈ 2

dΓ SM

ds
Re ε�

V R, (40)

which implies that non-zero difference can, in principle, arise
only if Re ε�

V R �= 0.
Similar to the case of Z → ν ν decay, only the NP contri-

butions to the vector currents contribute to both decay rates
in the lowest linear order. In addition, presence of only εV L ,
i.e. change of normalisation of the SM V − A interaction,
modifies the decay into Dirac neutrinos, while both εV L and
εV R affect the expression for the Majorana neutrino decay.
Scalar and tensor interactions lead to higher order correc-
tions, quadratic in NP effects, and are likely to be small
and difficult to observe taking into experimental accuracy
of corresponding measurement, both current and in foresee-
able future. Moreover, if only constant vector or scalar NP
contributions are present, the shape of the decay spectrum
dΓ D/M/ds is identical for Majorana and Dirac neutrinos and,
therefore, when used alone it can not distinguish between the
two possibilities (unless in some specific NP model both εV L

and εV R are known and thus the difference in normalisation
of the spectrum is also known). However, it is interesting to
note that if tensor NP contributions are substantial enough to
be observed, it would point out to the Dirac nature of neutrino,
since tensor interactions do not affect the s distribution for
Majorana neutrinos at all. We elaborate on these aspects in
Sect. 5 where we study the s distributions while considering
each of the possible interactions one at a time.

As an example of experimental constraints which can be
imposed on the NP neutrino couplings by the three-body
decays, let us consider the decay K+ → π+ ν ν whose
branching ratio as reported by NA62 Collaboration [42] is,

BrExp (
K+ → π+ ν ν

) =
(

10.6+4.0
−3.4

∣∣∣
stat

± 0.9syst

)
× 10−11, (41)
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Fig. 4 Constraints on the NP
parameters εV L and εV R
(assuming them to be real and
including quadratic term
contributions) using
experimentally measured
branching ratio of
K+ → π+ ν ν as given in
Eq. (41). The point denoted by
‘+’ corresponds to the SM
values εV L = 0 = εV R

which is consistent with the SM prediction [43],

BrSM (
K+ → π+ ν ν

) = (9.11 ± 0.72) × 10−11. (42)

Neglecting the terms quadratic in NP contributions and
assuming that terms that are linear in the parameters εQX

are approximately constant with respect to q2 ≡ s (which
could affect the integration of dΓ/ds to the total branching
ratio), we get the following constraints from the above men-
tioned experimental measurement,

∑

�=e,μ,τ

Re ε�
V L = 0.082 ± 0.214,

(
for Dirac
neutrinos

)
(43a)

∑

�=e,μ,τ

(
Re ε�

V L − Re ε�
V R

)

= 0.082 ± 0.214,

(
for Majorana

neutrinos

)
(43b)

which are consistent with zero.
If we assume that only vector NP contributions are domi-

nant and ε�
V L , ε�

V R are both real and identical for all neutrino
flavors, i.e. εeV X = ε

μ
V X = ετ

V X ≡ εV X (with X = L , R),
then the experimental measurement of Eq. (41) constrains
the NP parameters εV L and εV R as shown in Fig. 4 (there we
have kept the quadratic terms in εV L , εV R as well, assuming
that in principle they can be large compared to the SM terms
but cancel out due to some kind of accidental or symmetry-
related fine-tuning). It is clear from Fig. 4 that if we allow
for some amount of fine tuning and cancellations, large NP
contributions are still possible in both Dirac and Majorana
neutrino possibilities. One can also note that the contribu-
tions from scalar and tensor form factors are always positive,
so even if they are also non-negligible, they can only tighten
the bounds on εV L and εV R plotted in Fig. 4.

With more precise experimental decays data in future, the
estimate of NP contribution will also improve. Another inter-
esting decay in the same category as K+ → π+ ν ν is the

decay B+ → K+ ν ν which is being pursued at Belle II and
awaiting its branching ratio measurement. The SM prediction
for the branching ratio for this decay [44] is,

BrSM (
B+ → K+ ν ν

) = (4.6 ± 0.5) × 10−6, (44)

while the current experimental upper limit by Belle II [45] is
4.1 × 10−5 at 90% confidence level.

Again, as already discussed in the previous section, con-
straining individual parameters of the NP model (or in the
best case scenario even determining the nature of invisible
sector of the theory, including distinguishing the Dirac and
Majorana character of neutrinos) requires combining bounds
from many measurements, in addition to the example dis-
cussed above.

5 Distinguishing Dirac and Majorana neutrinos via NP
effects

Although experimentally measured branching ratios of the
two- and three-body decays can only constrain the proba-
ble NP couplings of neutrinos, from Eq. (36) and the non-
approximated part of Eq. (38) it seems that by analysing
observed s (missing mass-square) distribution in the three-
body decays one can also distinguish between Dirac and
Majorana neutrino possibilities, provided it can be measured
with sufficient accuracy. This could be very challenging and
may not possible in the near future as meson decays into
neutrino pair are rare and current experimental statistics are
not sufficient to probe the energy spectra of the visible final
state particles (equivalent to the s distribution). However,
it might eventually be possible when more data get accu-
mulated. Alternatively, similar analysis could be applied to
collision experiments with the neutrino antineutrino pair in
the final state, where statistics are much higher but one has to
deal with significant backgrounds and related uncertainties.
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As mentioned in the Introduction, one should note that
modification of the spectra of the visible particle in the
final state of the decay can also be caused if some invis-
ible particles other than neutrinos are present in the final
state. For distinguishing such NP possibilities, i.e. the pres-
ence of other invisible particles, we encourage the reader to
follow other existing proposals such as the ones discussed
in Refs. [38,46]. Specifically, in context of 3-body semi-
hadronic decays of mesons such as K → π f f where f
could be fermionic dark matter, heavy neutral lepton or some
long-lived fermion in addition to the usual active neutrino
possibility, the methods proposed in Ref. [46] using angu-
lar distributions and Dalitz plot asymmetries could be useful
in distinguishing these NP possibilities, without worrying
about hadronic uncertainties. In the discussion below, we
focus only on active neutrinos as the invisible particles and
study the effect of NP interactions over the experimentally
observable distribution.

Before proceeding further we note that in Eq. (38), εSL
and εSR as well as εT L and εT R contribute in a similar man-
ner. Therefore, we can discuss their impact in terms of two
effective NP parameters εS and εT , defined as follows,

εS =
√

|εSL |2 + |εSR |2, (45a)

εT =
√

|εT L |2 + |εT R |2. (45b)

Further we also consider, for simplicity, that all the NP
parameters are real quantities and agnostic to the flavor of
the neutrino in the final state. Below we shall first look at the
generic trends in the various s distributions for various NP
possibilities without considering any specific decay, and then
we show how these generic features can affect the spectrum
of a specific decay, on an example chosen to be B → K ν ν.

5.1 The generic trends in s (missing mass-square)
distributions

It is possible to infer the overall trends and order of magnitude
effects of the NP contributions in the s or missing mass-
square distributions, without considering any specific Pi →
P f ν ν decay, and by imposing the following simplifying
assumptions in Eqs. (38a) and (38b):

1. the form factor FSM has no s dependence,

2. neglect O
(
M2

f /M
2
i

)
terms, and

3. neglect the mν dependent term.

It is clear that except the last assumption, the other two need
not even be good approximations in a real world example. We
will relax these assumptions later while considering a specific
decay. For the time being, we note that the above assump-
tions simplify the analysis of Eq. (38) which can now be

cast into the discussion of the dimensionless and normalised
distributions XD/M defined as,

XD/M = M2
i

Γ SM

dΓ D/M

ds
= 1

Γ SM

dΓ D/M

ds̃
, (46)

with,

Γ SM ≈ 1

(2 π)3

M5
i |FSM|2

192
. (47)

Using the simplifying assumptions, XD/M can be rewritten
in the following universal form,

XD = 4 (1 − s̃)

(
(1 − s̃)2

(
1 + 2 εV L + ε2

V L + ε2
V R + s̃

2
ε2
T

)

+ 3

2
s̃ ε2

S

)
, (48a)

XM = 4 (1 − s̃)

(
(1 − s̃)2 (

1 + 2 εV L − 2 εV R + (εV L − εV R)2)

+ 3 s̃ ε2
S

)
, (48b)

where s̃ = s/M2
i is a dimensionless quantity which varies in

the range [0, 1].
To illustrate the order of the expected magnitude of effects

of NP neutrino couplings in the decay distributions, let us
consider contribution from each of the NP parameters indi-
vidually and one at a time. In Fig. 5 we plot, in presence of
individual NP contributions, the distributions of the quanti-
ties XD/M . The main features of these distributions are as
follows.

1. The effect of left-handed vector NP contributions is iden-
tical for both Dirac and Majorana neutrinos. Therefore,
such a NP contribution would not lead to any difference
between the Dirac and Majorana possibilities.

2. The right-handed vector NP contribution has opposite
effects on Dirac and Majorana neutrinos. For Dirac case
the differential decay rate is enhanced, while for Majorana
case it is reduced. This opposite behaviour can clearly dis-
tinguish between the two possibilities.

3. As is also clear from Eqs. (48a) and (48b) (also Eqs. (38a)
and (38b)), the effect of scalar NP contributions is
enhanced in case of Majorana neutrinos by a factor 2 com-
pared to that in case of Dirac neutrinos.

4. The tensor NP contributions do not contribute to the differ-
ential decay rate for Majorana neutrinos, while for Dirac
neutrinos such rate gets enhanced. However, from Figs. 5
it is clear that such enhancement is not substantial when
compared with effects from other NP possibilities. There-
fore, tensor NP interaction would be harder to probe than
the other NP possibilities.
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Fig. 5 Comparison of various
generic NP contributions in
Pi → P f ν� ν� decay assuming
that the mass of the final meson
P f can be neglected in
comparison with the mass of the
initial meson Pi and assuming
constant form factors. As noted
in the main text, all NP
possibilities, except the
left-handed vector NP
contribution, can in principle
distinguish between Dirac and
Majorana neutrinos

5.2 Patterns in s distributions of B → K ν ν decay in
presence of NP

The discussion in Sect. 5.1 is applicable to allPi → P f ν� ν�

decays but under the set of strong assumptions which may
not be satisfied in real processes. In particular, the form factor
FSM is known to be in general s-dependent, as shown by the
QCD lattice calculations. To study the effect of s dependence
of FSM on the distinguishing features of Dirac and Majorana
neutrinos, let us analyse as an example the decay B → Kνν,
relaxing the assumptions we had made in Sect. 5.1. In partic-
ular, we use here the functional form of B → K form factors
in the SM as given in Ref. [47] and consider the full form of
Eqs. (38a) and (38b) (although we have continued to assume
the unknown NP form factors εB→K

X to be independent of s
for simplicity).

Without the simplifying assumptions of Sect. 5.1, the
detailed shape of s distributions changes as shown in Fig. 6,
but they remain visibly different for Dirac and Majorana

neutrino possibilities. We note the following salient features
noticeable in Fig. 6.

1. The general trends noted before in context of Fig. 5 are
also clearly seen in Fig. 6. The presence of NP contribu-
tions, except the left-handed vector NP contribution, do
indeed lead to different and distinguishable distributions
for Dirac and Majorana neutrinos.

2. The distributions in Fig. 6 are significantly altered com-
paring to the ones shown in Fig. 5 for larger values of s, in
concordance with the enhancement of FSM with increas-
ing s.

3. We note also that if mν is not neglected, the distributions
plotted in Fig. 6 actually drop to zero at the minimal value
of s = 4m2

ν (when the factorb in the numerator of Eq. (39)
vanishes). However, asmν is extremely tiny in comparison
with other masses, such drop of distributions is very steep
and so close to s = 0 that it is unlikely to be observed
experimentally.
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Fig. 6 Comparison of various
generic NP contributions in
B → K ν� ν� decay. We use the
scalar and tensor NP parameters
εS and εT as defined in Eq. (45).
ΓSM denotes the partial decay
rate of B → K ν� ν� in the SM.
Also note the different overall
normalisation factors used to
show the distributions more
clearly

We would like to also emphasise the fact that in Figs. 5 and
6, the NP parameters are shown to be positive just for the pur-
pose of illustration. In Eqs. (38) and (48), it is clear that the
scalar and tensor NP contributions are insensitive to the sign
of the NP parameter. For left-handed vector NP contribution
alone, both Dirac and Majorana cases yield identical s dis-
tributions, where as for right-handed vector NP contribution
alone, the Dirac and Majorana cases would still have oppo-
site behaviour. Therefore, our conclusions regarding distin-
guishability of Dirac and Majorana nature from observed s
distribution still holds true, in general, even for negative NP
parameters.

Study of the energy spectra of the decays with neutrino
antineutrino pair in the final state is very challenging as
such decays have very low branching ratios. Notably also
the example considered in this section, B → Kνν, has yet
to be observed, although current experimental bound for it is
already less than order of magnitude worse than the predic-
tion of its SM decay rate [44,45].

In order to estimate the accuracy of spectra measurement
required to see the difference between the Dirac and Majo-
rana neutrinos, let us define the quantity

ΔX =
∣∣XD − XM

∣∣
XD

. (49)

One can assume two scenarios. First, one can estimate that
the maximal size of neutrino NP couplings to be of the order
of limit given in Eq. (43), so O(0.1). The second scenario
assume that there is a fine tuning between NP couplings and
they may be large, O(1), as shown in Fig. 4. This is possible
only for εV L and εV R as scalar and tensor contributions to
total decay branching ratios are always positive and cannot
cancel out with other terms. It turns out that the relative mod-
ification of spectrum shape, given by ΔX , is of the similar
order as the size of the (dimensionless) coupling εX them-
selves. This can be e.g. seen assuming that only εV R does
not vanish. Then one has for every s̃ the fixed ratio
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ΔX = 2 |εV R |
1 + ε2

V R

. (50)

Given the rarity of considered decays and statistics necessary
to obtain its energy spectrum, the first scenario εV R ∼ ΔX ∼
O(0.1) is unlikely to be observed at least in the near future.
However, in an (optimistic!) scenario of fine tuned large NP
couplings, εV R ∼ ΔX ∼ O(1), the nature of neutrinos can
become clear if only the decay spectrum is at all measurable,
even with small accuracy. If it happens, it also points out to
the type of the neutrino NP interactions, as only the right-
handed vector εV R couplings can simultaneously be large
and lead to difference between the Dirac and Majorana case.

One should also note that Figs. 5 and 6 were plotted by
taking individual non-vanishing NP neutrino couplings one
at a time. In general, the real shape of spectrum can depend on
several parameters and differ from those displayed in Figs. 5
and 6. In any specific NP model the effective shape is calcula-
ble and if experiment is able to measure it, fitting procedures
can give the information on model parameters. However, as
usual just discovery of discrepancy with the SM predictions
does not immediately disclose what kind of NP interactions
may be involved and further studies with combining more
observables are necessary.

As the experimental accuracy of these s distributions gets
improved, one could be optimistic that in future with enough
of detected events, such a study might become feasible. We
hope that the possibility of discovering NP as well as distin-
guishing the Dirac and Majorana nature of neutrinos based
on their different NP behaviours, would lend support to any
proposal for further experimental exploration of such rare
decays as B → K ν ν and K → π ν ν.

6 Conclusions

In this paper, we have provided a general framework for
analysing the processes containing a neutrino antineutrino
pair in the final state, considering neutrinos to be either Dirac
or Majorana fermions. We emphasise the fact that the quan-
tum mechanically identical nature of Majorana neutrino and
antineutrino does not depend on the size of their mass. Thus,
the different statistical properties of the Dirac and Majorana
neutrinos can lead, at least in the New Physics models with
non-standard neutrino couplings, to significantly different
predictions for the decay rates and for the spectra of visi-
ble particles. Such differences are (at least in principle) not
proportional to the tiny neutrino masses, unlike the huge sup-
pression inherently present in the neutrino-mediated Lepton
Number Violating processes.

We argue that within the SM due to the particular structure
of the neutrino vector-like left-handed only couplings, such
not-suppressed effects of different statistics unfortunately

still disappear when integrating over the phase space of final
state neutrinos (excluding eventually some special kinematic
scenarios where the neutrino momenta can be reconstructed
or inferred, see Ref. [37] for more details). However, we point
out that, when New Physics effects are taken into consider-
ation, the difference between Dirac and Majorana neutrino
possibilities could survive even if one neglects neutrino mass
dependent terms and integrates over the phase space of final
state neutrinos.

We explicitly illustrate the general analysis by exam-
ples of neutral current processes with the 2-body or 3-body
final states. Using our example processes Z → ν ν and
Pi → P f ν ν decays, we show how the experimental bounds
on the NP couplings differ between Dirac neutrino and Majo-
rana neutrino possibilities. We also point out that if the NP
terms are substantial comparing to SM couplings and the dif-
ferential decay rate or equivalently the missing mass-square
distribution for Pi → P f ν ν decay can be measured accu-
rately enough, the shape of the spectrum can directly help
discern whether neutrinos are Dirac or Majorana fermions,
at least in NP models were there are no new light exotic states
which could also escape detection.
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